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MAXIMUM LIKELIHOOD ESTIMATION OF MULTILEVEL STRUCTURAL EQUATION

MODELS WITH RANDOM SLOPES FOR LATENT COVARIATES

Abstract

A maximum likelihood estimation routine for two-level structural equation

models with random slopes for latent covariates is presented. Because the likelihood

function does not typically have a closed-form solution, numerical integration over

the random effects is required. The routine relies upon a method proposed by du

Toit and Cudeck (2009) for reformulating the likelihood function so that an often

large subset of the random effects can be integrated analytically, reducing the

computational burden of high-dimensional numerical integration. The method is

demonstrated and assessed using a small-scale simulation study and an empirical

example.

Key words: multilevel SEM, random effects, random slopes, maximum likelihood

estimation
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1. Introduction

Multilevel structural equation modeling (MSEM) is an emerging statistical framework for

the analysis of hierarchical data, where the underlying units of analysis are nested within larger

units, known as groups or clusters, a popular example being students nested within classrooms

or schools. B. O. Muthén (1989) suggests that the development of the MSEM framework began

decades ago with the analysis of multivariate random intercept models in the unpublished

dissertation of Schmidt (1969). Since then, Goldstein and McDonald (1988), McDonald and

Goldstein (1989), B. O. Muthén (1989), B. O. Muthén and Satorra (1989), Lee (1990), and

McDonald (1993) have each proposed two-level structural equation models (SEMs). Liang and

Bentler (2004) noted the similarities between each of the formulations presented, developed a

general MSEM formulation that contained many of the previously proposed models as special

cases, and constructed an efficient Expectation-Maximization (EM) algorithm which was

implemented within EQS (Bentler, 2004). Similar models can be estimated using LISREL

(Jöreskog & Sörbom, 1996) and the R (R Core Team, 2017) package lavaan (Rosseel, 2012).

The only types of level-2 latent variables that can be included in these models are latent

factors and random intercepts, which allow the means of the modeled variables to randomly

vary across groups or clusters. Yet random slopes, which allow the relationship between

variables to randomly vary across clusters, are an important component of multilevel modeling

(MLM). Frameworks for MSEMs with random slopes for observed covariates have been

presented by Mehta and Neale (2005) and Rabe-Hesketh, Skrondal, and Pickles (2004), which

are respectively implemented within the R package openMx (Neale et al., 2016) and the Stata

(StataCorp, 2005) package gllamm (Rabe-Hesketh et al., 2004). Shin and Raudenbush (2010)

have also presented a form of an MSEM that allows for random slopes for observed covariates.

Although such models are quite flexible, one limitation is that random slopes may not be

specified for latent variables. That is, random heterogeneity in the relationship among latent

variables cannot be modeled, which is a severe limitation.

The modeling framework implemented within Mplus (L. K. Muthén & Muthén, 2017), on

the other hand, allows for MSEMs with random slopes for observed and latent covariates.

However, maximum likelihood (ML) estimation of such MSEMs is substantially more complex

than for previously proposed MSEMs because the likelihood function does not have a

closed-form solution. Therefore, the function must be approximated using numerical methods,
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such as Gaussian quadrature (e.g., Pinheiro & Bates, 1995), which are computationally

intensive. For example, referring to MSEMs with random slopes for latent covariates,

Asparouhov and Muthén (2019a) state:

Within the Mplus ML framework all the random effects will need to be numerically

integrated and thus such an estimation is limited by the number of variables,

covariates, and random effects. With more than 3 or 4 random effects the ML

estimation based on numerical integration will be slow, less precise, and quite likely

to lead to convergence problems.

As an alternative, the Mplus developers have adopted Bayesian estimation for such models,

which avoids quadrature-based integration by sampling from the posterior distribution of the

parameters. However, Bayesian estimation can also be computationally intensive, especially

when the prior distributions and likelihood function are non-conjugate. Further, extra care

must be taken to assess whether the sampling routine has converged onto the posterior

distribution of the parameters, ensuring that the estimates are meaningful.

In this paper, it is demonstrated that ML estimation of MSEMs with random slopes for

latent covariates does not require numerical integration over all of the random effects. Instead,

a computational method proposed by du Toit and Cudeck (2009) in the context of nonlinear

mixed effects models can be applied so that only a subset of the random effects within

MSEMs, which tends to be fewer than 3 or 4 for most practical models, need to be numerically

integrated. Thus, ML estimation of such models is not typically computationally impractical.

In fact, it can be relatively fast and accurate.

The remainder of this paper is organized as follows. In Section 2, the general MSEM is

introduced and the advantages of the MSEM framework are discussed. An ML estimation

routine for the MSEM is presented in Section 3. Within the routine, the likelihood function is

restructured so that only a subset of the random effects need to be numerically integrated. In

Section 4, a small-scale simulation study is conducted to compare the convergence rate and

estimates of the new estimation routine with those obtained using ML estimation in Mplus. An

example model is then fit to data from the 2003 Program for International Student Assessment

(PISA; OECD, 2003) in Section 5. The paper concludes with a discussion in Section 6.
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2. Model

In this section, the general MSEM and the advantages of the MSEM framework are

presented. Attention is restricted to two-level SEMs with (conditionally) normal response

variables. Potential methods for extending the modeling framework to account for additional

levels of analysis and other response distributions (e.g., Poisson, binomial) are discussed in

Section 6.

Let zj be a k-dimensional vector of cluster-level (i.e., level-2) observations for cluster j

(j = 1, . . . , J) and yij be a p-dimensional vector of individual-level (i.e., level-1) observation for

unit i (i = 1, . . . , nj) nested within cluster j. The observations (z′j ,y
′
ij)
′ are modeled as(

zj
yij

)
=

(
ν(z)

ν
(y)
j

)
+

(
Λ
(z)
B

Λ
(y)
B

)
αj +

(
0

ΛW

)
ηij +

(
εzj
εyij

)
, (1)

where ν(z) and ν
(y)
j are k-dimensional and p-dimensional vectors of intercepts , Λ

(z)
B and Λ

(y)
B

are k ×mB and p×mB loading matrices for the mB-dimensional vector of level-2 (i.e.,

between-cluster) latent factors αj , ΛW is a p×mW loading matrix for the mW -dimensional

vector of level-1 (i.e., within-cluster) latent factors ηij , and εzj and εyij are k- and

p-dimensional multivariate normal error vectors with means 0 and covariance matrices ΘB and

ΘW , respectively. It is assumed that the covariances between all combinations of αj , ηij , εzj ,

and εyij are 0.

Equation 1 is often termed the measurement model, as it relates the observed dependent

variables to the latent variables. The within-cluster latent variables ηij are modeled via the

within-cluster structural model, which is defined as

ηij = BWjηij + ΓWjxij + ζij , (2)

where BWj is an mW ×mW matrix relating the within-cluster latent variables to one another

and ΓWj is an mW × q matrix relating q observed level-1 covariates xij to level-1 latent

variables. The disturbances ζij are multivariate normal random variables with mean 0 and

covariance matrix Ψ. It is assumed that Cov(εyij , ζij) = 0 for all combinations of i, j.

Plugging the equation for ηij into Equation 1 results in the reduced form of the model for

yij :

yij = ν
(y)
j + Λ

(y)
B αj + ΛW (I−BWj)

−1ΓWjxij + ΛW (I−BWj)
−1ζij + εyij . (3)
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This model closely resembles the single-level SEM of B. Muthén (1984) except for the level-2

latent factors αj and the j subscripts for ν
(y)
j , BWj , and ΓWj , which imply that these

parameters may vary across level-2 units. Suppose there are r total elements of ν
(y)
j , αj , BWj ,

and ΓWj that vary across clusters. All of these r elements can be combined into the vector ηj ,

which differs from ηij , and modeled with the following between-cluster structural model:

ηj = µ+ BBηj + ΓBxj + ζj . (4)

Here, ζj contains r multivariate normal random effects with covariance matrix Ω. Further, µ,

BB, and ΓB are r × 1, r × r, and r × s vectors and matrices, respectively, containing fixed

effects, and xj contains s level-2 observed covariates.

As with single-level SEMs, the observed endogenous variables (yij and zj) can be

regressed on observed and latent covariates at each level by constructing single-indicator latent

variables and utilizing the B and Γ matrices at the corresponding level. This approached is

discussed in the context of single-level SEMs by Bollen (1989) and others.

2.1. Advantages of the MSEM framework

The general MSEM framework has several advantages over traditional SEM and MLM

frameworks. The main advantage over the traditional SEM framework is the ability to model

dependence between lower-level observations due to clustering. Some advantages of the MSEM

framework relative to the traditional MLM framework are the ability to easily fit multivariate

MLMs and seamlessly integrate level-1 and level-2 response variables within a unified model.

Another notable advantage of the MSEM framework is the capability to specify

measurement models (i.e., factor analysis models) using hierarchically structured data. In

addition to accounting for random measurement error at both levels of analysis, multilevel

factor analysis presents a more sophisticated framework for understanding level-2 constructs.

Such level-2 latent factors may be reflective (i.e., climate, shared) constructs in which level-1

responses are viewed as indicators of some shared cluster-level variable (e.g., student ratings of

their teacher’s effectiveness), formative (i.e., contextual, configural) constructs in which the

level-2 factor corresponds to the mean of the level-1 construct within a cluster (e.g., latent

school means of students’ interest in science), or both (Lüdtke et al., 2008; Marsh et al., 2012;

Stapleton, Yang, & Hancock, 2016).
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A final advantage of the MSEM framework, which has been the recent focus of many

methodologists, is the ability to latent-center level-1 covariates. When a level-1 covariate varies

at both levels of analysis, the relationship between the covariate and the response variable may

differ at each level (Cronbach et al., 1976). Further, the covariate may have a different meaning

at each level of analysis. Thus, it is recommended to decompose the covariate into additive and

orthogonal components that vary only at the within- and between- levels, respectively. The

relationship between each of these components and the response variable can then be modeled.

Within the MLM framework, this is almost always performed using an observed variable

decomposition, where the observed cluster means of the covariate is a predictor on the

between- level and the observed cluster-centered covariate is used as a predictor on the within-

level (see, e.g., Enders & Tofighi, 2007). However, Lüdtke et al. (2008) demonstrated that,

when the construct is reflective or the sampling ratio of lower-level units is small, the observed

cluster means may contain measurement error due to sampling variability and this error may

result in a biased estimate of the between-group effect if the true within- and between- effects

differ. This bias is larger when the predictor has a lower intraclass correlation coefficient (ICC)

and within-cluster sample sizes are smaller, as the cluster means are estimated less reliably.

Alternatively, the MSEM framework allows for a latent decomposition (i.e., latent

centering) of the predictor, where the between- component is modeled using the latent cluster

means and the within- component is modeled using the original predictor centered around the

latent cluster means. Because the means are treated as latent, uncertainty in the true cluster

means is directly modeled and the bias in the between-cluster effect is eliminated (Lüdtke et

al., 2008).

3. Parameter estimation

The difficulty of ML parameter estimation for MSEMs with random slopes for latent

covariates can be demonstrated using the latent covariate model in which the within-cluster

effect of xij on yij is random. This model can be formulated within the general MSEM

framework defined by Equations 1-4,(
xij
yij

)
=

(
1 0
0 1

)(
αxj
αyj

)
+

(
1 0
0 1

)(
ηxij
ηyij

)
(5)

(
ηxij
ηyij

)
=

(
0 0

βWj 0

)(
ηxij
ηyij

)
+

(
ζxij
ζyij

)
(6)
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αxj
αyj
βWj

 =

 µαx
µαy
µβWj

+

 0 0 0
βB 0 0
0 0 0

 αxj
αyj
βW,j

+

ζαxjζαyj
ζβWj

 , (7)

which treats βWj as a random variable that is modeled at the between-cluster level. In scalar

form, it can be seen that xij is decomposed into latent between-cluster (αxj ) and

within-cluster (ηxij ) components,

xij = αxj + ηxij . (8)

The outcome variable yij , which is also decomposed into between-cluster (αyj ) and

within-cluster (ηyij ) variables, is then regressed on each of these components and the slope for

ηxij is random,

yij = µαy + βBαxj + ζαyj︸ ︷︷ ︸
αyj

+βWjηxij + ζyij︸ ︷︷ ︸
ηyij

. (9)

Modeling βWj as random results in an interaction between the level-2 latent variable βWj and

level-1 latent variable ηxij . This latent variable interaction, which drastically increases the

computational complexity of the model, is not possible within many of the MSEM frameworks

discussed previously, such as those of Liang and Bentler (2004), Rabe-Hesketh et al. (2004),

and Mehta and Neale (2005).

When βWj is fixed, then yij is a linear function of the normally distributed random

variables αxj , ζαyj , ηxij , and ζyij . As a result, the marginal distribution of yij is also normal

and so the likelihood function can be computed in closed-form. But when βWj is random, the

marginal distribution of yij is not normal and cannot be computed in closed-form. Instead, it

must be numerically approximated. For example, in Mplus an (accelerated) EM algorithm is

implemented in which the full r-dimensional integral is approximated using quadrature within

the E-step (i.e., αxj , ζαyj , and ηxij are all numerically integrated). Since the computational

burden of quadrature-based numerical integration increases exponentially as a function of the

dimension of integration, the types of models that can practically be fit using ML in Mplus are

restricted to those with relatively small r.

However, as will be demonstrated here, r-dimensional numerical integration is not needed

for the MSEM. Instead, a method for reducing the dimension of numerical integration

introduced in the context of nonlinear mixed models can be applied. du Toit and Cudeck

(2009) demonstrated that nonlinear mixed models with normally distributed random effects

and conditionally normal response variables may contain random effects that enter the
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function both linearly and nonlinearly. By conditioning on the nonlinear random effects, they

were able to integrate the linear random effects out of the likelihood function analytically. This

is straightforward as the sum of normally distributed random variables is also normally

distributed and, by definition, the data are modeled as a linear function of the linear random

effects.

An application of this method was presented by Cudeck, Harring, and du Toit (2009) for a

specific single-level SEM in which two latent factors interact. By conditioning on one of the

factors, the remaining factors enter the model linearly. Thus, only one dimension of numerical

integration was required for the ML estimation approach. This method, which has not yet

been implemented for the estimation of MSEMs, is relied upon here.

A ML estimation routine for the general MSEM defined in Section 2 is presented in this

section. After defining the likelihood function, the model is slightly reparameterized to help

distinguish between linear and nonlinear random effects. Next, the nonlinear random effects

are conditioned upon so that the conditional distribution of the linear random effects, as well

as the conditional distribution of the data marginalized over the linear random effects, can be

derived. After simplifying the computations for this conditional distribution, Gaussian

quadrature is described for numerically integrating over the nonlinear random effects and the

computation of standard errors is discussed.

3.1. Likelihood

Letting yj = (y′1j ,y
′
2j , . . . ,y

′
nj ,j

)′ and ϑ contain all of the free and non-redundant

parameters, the marginal likelihood for dj = (z′j ,y
′
j)
′ is

Lj(ϑ|dj) =

∫
ηj

[ nj∏
i=1

f(yij |ηj ,ϑ)

]
f(zj |ηj ,ϑ)f(ηj |ϑ)dηj , (10)

where

yij |ηj ∼ N (µyij ,ΣW ), zj |ηj ∼ N (ν(z) + Λ
(z)
B αj ,ΘB),

and ηj ∼ N
(
(I− BB)−1(µ+ ΓBxj),Ση

)
, (11)

with

µyij = ν
(y)
j + Λ

(y)
B αj + ΛW (I−BWj)

−1ΓWjxij , (12)

ΣW = ΛW (I−BWj)
−1Ψ(I−BWj)

−1′Λ′W + ΘW , and Ση = (I− BB)−1Ω(I− BB)−1
′
.
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Note that within this formulation, the level-1 latent factors ηij have already been marginalized

out of the likelihood function, but the r-dimensional integration over the level-2 random effects

remains. However, by relying on the method proposed by du Toit and Cudeck (2009), the

level-2 random effects can be partitioned into those that enter linearly and those that enter

nonlinear. By conditioning on the nonlinear random effect, the linear random effect can be

integrated out of the likelihood function analytically.

3.2. Linear vs. nonlinear random effects

Letting γWj = vec(ΓWj), ΓWjxij can be rewritten as

ΓWjxij = (x′ij ⊗ ImW )γWj , (13)

where ⊗ denotes the Kronecker product and the vec(·) operator stacks the columns of the

corresponding matrix. Further, ν
(z)
j can be constructed from ν(z) and εzj , such that

ν
(z)
j = ν(z) + εzj . Consequently, all residual random variation in zj is modeled via ν

(z)
j , which

is now included within ηj , and Ω is expanded to include the elements within ΘB. This step is

not necessary, per se, but it will simplify later computations. After this slight

reparameterization, the reduced-form for the general MSEM can be written as:(
zj
yij

)
=

(
G
Qij

)
ξj +

(
0

ΛW (I−BWj)
−1

)
ζij +

(
0
εyij

)
(14)

where (
G
Qij

)
=

(
I 0 Λ

(z)
B 0

0 I Λ
(y)
B ΛW (I−BWj)

−1(x′ij ⊗ ImW )

)
, (15)

and ξj = (ν
(z)′

j ,ν
(y)′

j ,α′j ,γ
′
Wj)

′. Only a subset of ξj will vary across clusters. These elements

that vary across clusters can be denoted using a tilde (“∼”). That is, let ν̃j , α̃j , and γ̃Wj

denote the elements of νj , αj , and γWj that vary across clusters j, respectively, where

νj = (ν
(z)′

j ,ν
(y)′

j )′. These elements can be combined, in the same order as previously listed,

into the vector ξ̃j . Let G̃ and Q̃ij denote the columns of G and Qij corresponding to the

elements of ξ̃j . That is, if ξ̃j consists of the first, third, and seventh elements of ξj , then G̃ and

Q̃ij contains the first, third, and seventh columns of G and Qij , respectively. The elements of

βWj = vec(BWj) that vary across clusters can similarly be denoted as β̃Wj . Thus, the level-2

random effects are ηj = (ξ̃′j , β̃
′
Wj)

′.
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Within this formulation, it can be seen that the observed data are modeled as a linear

function of ξj (and, thus, ξ̃j). The random effects β̃Wj , on the other hand, enter the model

nonlinearly as these elements are multiplied by the random vectors ζij and γ̃Wj , resulting in

one or more latent variable interactions. However, once the nonlinear random effects are

conditioned upon, the (conditional) likelihood of the data marginalized over the linear random

effects ξ̃j and ζij can be computed analytically. Consequently, only the random effects β̃Wj

will need to be numerically integrated within the likelihood function.

3.3. Conditional distribution of the linear random effects

Within the general MSEM, the distribution of ηj is multivariate normal:

ηj ∼ N (µη,Ση), (16)

where

µη = (I− BB)−1(µ+ ΓBxj), (17)

and

Ση = (I− BB)−1Ω(I− BB)−1
′
. (18)

Partitioning ηj into the two subvectors ξ̃j and β̃Wj corresponds to partitioning ηj into the

random effects that enter the model linearly and nonlinearly, respectively. The vector µη and

matrix Ση can also be partitioned accordingly:

ηj =

(
ξ̃j
β̃Wj

)
∼ N

[(
µξ
µβW

)
,

(
Σξ Σξ,βW

ΣβW ,ξ ΣβW

)]
. (19)

The conditional distribution of ξ̃j given β̃Wj = b then follows as

ξ̃j |β̃Wj ∼ N (µξ•βW ,Σξ•βW ), (20)

with

µξ•βW = µξ + Σξ,βWΣ−1βW (b− µβW ), (21)

and

Σξ•βW = Σξ − Σξ,βWΣ−1βWΣβW ,ξ. (22)
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3.4. Conditional distribution of the response variables

The distribution of dj = (z′j ,y
′
j)
′ conditional on β̃Wj can then be derived using the

conditional distribution of ξ̃j . Letting ν∗j , α∗j , Γ∗Wj , B
∗
Wj , and Q̃∗ij denote the original vectors

and matrices with the linear random effects replaced by their corresponding conditional

expectation in µξ•βW and the nonlinear random effects replaced by the value for which they

are conditioned on, dj |β̃Wj is multivariate normal with mean

µdj =

(
µzj

µyj

)
=


µzj

µy1j

µy2j

...
µynj,j

 , (23)

where

µzj = ν
(z)∗
j + Λ

(z)
B α

∗
j , (24)

and

µyij = ν
(y)∗
j + Λ

(y)
B α

∗
j + ΛW (I−B∗Wj)

−1Γ∗Wjxij . (25)

The (conditional) covariance matrix of dj |β̃Wj is given as

Σdj =

 G̃Σξ•βW G̃′ symmetric

Q̃∗jΣξ•βW G̃′ Q̃∗jΣξ•βW Q̃∗
′
j + Inj ⊗ Σ∗W

 (26)

where

Q̃∗j =


Q̃∗1j
Q̃∗2j

...

Q̃∗nj ,j

 , (27)

and Σ∗W = ΛW (I−B∗Wj)
−1Ψ(I−B∗Wj)

−1′Λ′W + ΘW .

Letting

εdj =

(
εzj
εyj

)
=

(
zj − µzj

yj − µyj

)
, (28)

the conditional density of dj |β̃Wj can be written as:

f(dj |β̃Wj) = (2π)−(pnj+k)/2|Σdj |
−1/2exp

{
− 1

2
ε′djΣ

−1
dj
εdj

}
. (29)
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3.5. Simplifying the conditional distribution of dj |β̃Wj

The matrix Σdj is often of a very high dimension (pnj + k) and the calculation of its

determinant and inverse, which must be computed for each group j, is computationally

intensive. Luckily the expressions for |Σdj | and ε′djΣ
−1
dj
εdj can be simplified by following

similar derivations provided by McDonald (1993) and du Toit and du Toit (2008, Appendix).

First, define:

Aj =

nj∑
i

Aij =

nj∑
i

Q̃∗
′
ijΣ
∗−1
W Q̃∗ij , Tj = (Σ−1ξ•βW + Aj)

−1,

Cj = (I−AjTj), Dj = (I−AjTj)Aj = CjAj ,

Σzz.y = G̃(Σξ•βW − Σξ•βWDjΣ
′
ξ•βW )G̃′,

Ej = G̃′Σ−1zz.yG̃, Fj = C′jΣξ•βWEjΣ
′
ξ•βWCj ,

Hj = Fj −Tj , and pj =

nj∑
i=1

pij =

nj∑
i=1

Q̃∗
′
ijΣ
∗−1
W εyij . (30)

Using these expressions, the determinant of Σdj can be re-expressed as:

|Σdj | = |Σ
∗
W |nj |Σξ•βW ||Σ

−1
ξ•βW + Aj ||Σzz.y|, (31)

and ε′djΣ
−1
dj
εdj can be re-expressed as:

ε′djΣ
−1
dj
εdj =tr

[
Σ∗−1W

nj∑
i=1

εyijε
′
yij

]
+ p′jHjpj

− 2p′jC
′
jΣξ•βW G̃′Σ−1zz.yεzj

+ ε′zjΣ
−1
zz.yεzj . (32)

Each of these simplifications require much smaller matrix inversions and determinants than

computing Equation 29 directly. Specifically, the largest matrix inversion or determinant is of

dimension max{p, k, rL}, where rL is the number of linear level-2 random effects (i.e., the

number of elements in ξ̃j).

3.5.1. Further simplifications for special cases of the model

Various special cases of the MSEM lend themselves to even further simplified

computations of the (conditional) likelihood. For example, when the model only includes
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observed level-1 covariates with fixed effects, such that ξ̃j contains no elements of ΓWj (i.e.,

ΓWj = ΓW for all j), the matrix Q̃∗ij no longer varies across units (i.e., Q̃∗ij = Q̃∗ for all ij).

Consequently, the conditional density takes a strikingly similar structural form as the random

intercept MSEM densities of McDonald and Goldstein (1989), McDonald (1993), and

B. O. Muthén (1989), and so it can be further simplified using an adaptation of their

derivations. Specifically, after defining

Σzz = G̃Σξ•βW G̃′, Σyz = Q̃∗Σξ•βW G̃′,

Σyy.z = Q̃∗Σξ•βW Q̃∗
′ − ΣyzΣ

−1
zz Σ′yz,

Σj = Σ∗W + njΣyy.z, and ε̄yj = n−1j

nj∑
i=1

εyij , (33)

the log of f(dj |β̃Wj) can be reformulated as

log{f(dj |β̃Wj)} =− 1

2

{
(pnj + k)log(2π) + log|Σzz|+ (nj − 1)log|Σ∗W |+ log|Σj | (34)

+ tr{[Σ−1zz + njΣ
−1
zz Σ′yzΣ

−1
j ΣyzΣ

−1
zz ]εzjε

′
zj} − 2njtr{Σ−1zz Σ′yzΣ

−1
j ε̄yjε

′
zj}

+ tr
[

Σ∗−1W

nj∑
j

εyijε
′
yij

]
− njtr{[Σ∗−1W − Σ−1j ]ε̄yj ε̄

′
yj}
}
.

3.6. Gaussian quadrature

The likelihood function for cluster j now requires an rNL-dimensional integration:

Lj(ϑ|dj) =

∫
f(dj |β̃Wj)f(β̃Wj)dβ̃Wj , (35)

where rNL is the dimension of β̃Wj and ϑ contains all freely estimated and non-redundant

model parameters. The intractable integral can be approximated using Gaussian quadrature.

For a multidimensional integral where β̃Wj has mean µβW and covariance matrix ΣβW , the

appropriate nodes tq = (tq1 , . . . , tqrNL )′ and weights wq = (wq1 , . . . , wqrNL )′ are:

tq = µβW + Σ
1/2
βW

t∗q , and wq =
1√
π
w∗q , (36)

where t∗q and w∗q are standard Gaussian quadrature nodes and weights, respectively, and Σ
1/2
βW

is the Cholesky decomposition of ΣβW . Thus, using Q nodes per dimension, Equation 35 is

approximated as

Lj(ϑ|dj) =

Q∑
q1=1

· · ·
Q∑

qrNL=1

f(dj |β̃Wj = tq)wq1 . . . wqrNL . (37)
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For models with large ICCs and multidimensional integrals, adaptive Gaussian

quadrature, where the nodes are centered and scaled adaptively for each cluster, can provide a

more accurate approximation to the log-likelihood with fewer nodes. The details of this

approach are discussed by Pinheiro and Bates (1995) and Rabe-Hesketh, Skrondal, and Pickles

(2002), but are omitted here for space-saving purposes.

3.7. Standard errors

Maximization of the log-likelihood function can then be carried out using any general

purpose optimization algorithm. An advantage of direct maximization of the likelihood

function, relative to an indirect maximization via the EM algorithm, is that standard errors for

the parameters can be obtained more easily. Let

I(ϑ) = −∂
2l(ϑ|d)

∂ϑ∂ϑ′
(38)

denote the observed information matrix, which is the negative of the Hessian matrix of the

log-likelihood function. The standard errors for the estimated parameters can be estimated as

se(ϑ̂j) = [I(ϑ̂)−1]
1
2
jj , (39)

where ϑ̂j is the jth parameter estimate and I(ϑ̂) is the observed information matrix evaluated

at the vector of parameter estimates, ϑ̂.

3.8. Implementation within R/C++

For the following simulation study and example analysis, the developed routine was

implemented within R (R Core Team, 2017), C++, and Rcpp (Eddelbuettel, 2013).

Specifically, the likelihood function was coded in C++ and maximized within R using the

nlminb algorithm in the optimx package (Nash, 2014). The maximization algorithm uses

first-order derivatives (i.e., the gradient vector). Rather than relying on numerical derivatives,

which can be imprecise and computationally costly, especially for models with many

parameters, the derivatives were computed using automatic differentiation (Griewank &

Walther, 2008) as implemented within the C++ Stan Math Library (Carpenter et al., 2015)

via the Rstan package (Stan Development Team, 2016). The standard errors were computed at

the final parameter estimates by taking the numerical derivatives of the gradient vector
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computed using automatic differentiation. A gentle introduction to automatic differentiation

for psychometrics research is provided by Cudeck (2005), and Carpenter et al. (2015)

document its implementation within Stan. The R, C++, and Stan source code used for fitting

the model (and other example models) is available at https://osf.io/pxz5s/. Ideally, these files,

along with this paper, will prompt statistical software developers to implement the proposed

estimation routine within existing packages and software.

4. Simulation

In this section, the performance of the newly proposed ML estimation routine is assessed

and compared to the ML routine implemented within Mplus. In addition to determining

whether the parameters can be recovered adequately, interest lies in whether the new routine

can reduce some of the non-convergence issues that can be prevalent when estimating MSEMs

using ML in Mplus.

The latent covariate model with a random slope is used for this simulation and the

between component of the predictor xij predicts both the outcome yij and the random slope

βWj . The full model in scalar form is

xij = αxj + ηxij (40)

yij = αyj + βWjηxij + εyij (41)

αyj = µαy + βBαxj + ζyj (42)

βWj = β0W + β1Wαxj + ζβWj
(43)

ηxij ∼ N (0, ψx), εyij ∼ N (0, θy), αxj ∼ N (µx, ωx), (44)(
ζyj
ζβWj

)
∼ N

[(
0
0

)
,

(
ωy ωy,βW

ωβW ,y ωβW

)]
. (45)

This model was recently used by Asparouhov and Muthén (2019a) who demonstrated that

Mplus’ Bayesian estimation can properly recover the true parameters for their simulation

condition (ICCx = .5, J = 500, nj = 15). The authors did not estimate the model using ML,

but had difficulty with convergence of a slightly more complex model when smaller level-1 and

level-2 sample sizes were used (Asparouhov & Muthén, 2019b, Model A2).

For this simulation, three factors that have been shown to impact estimation performance

of MSEMs were varied. These include the number of clusters (J = 100, 200, 400), the number
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of level-1 units within each cluster (n = 5, 10, 20), and the ICC of the predictor

(ICCx = .05, .1, .2, .3). The main parameters of interest are the structural parameters (βB,

β0W , β1W ) and the random slope variance (ωβW ). In the simulation, these parameters were

specified to be βB = 0.50, β0W = −0.50, β1W = 0.25, and ωβW = 0.30. The values for the

simulation conditions and parameters were chosen because they are in the range of what is

typical in behavioral science research and what has been specified in other simulation studies

for MSEMs (e.g., Lüdtke et al., 2008).

Using R, one-hundred datasets were simulated from each of the 3× 3× 4 = 36 simulation

conditions, resulting in a total of 3600 datasets. Each of the datasets were fit using the

estimation routine proposed here within R/C++ (see previous section for implementation

details) and using the ML estimation routine in Mplus (L. K. Muthén & Muthén, 2017) via

the MplusAutomation R package (Hallquist & Wiley, 2018). All of the code needed to

generate the data and fit the models is provided at https://osf.io/pxz5s/.

ML estimation in Mplus requires four dimensions of numerical integration for this model.

The maximum of 11 adaptive quadrature nodes per dimension (due to computer memory

constraints) was used in the simulation study. Regarding model specification, the predictor xij

was explicitly decomposed using the procedure outlined by Preacher, Zhang, and Zyphur

(2016), which is currently the only method for ML estimation of the parameters using Mplus.

Using the ML procedure developed here, only one dimension of numerical integration is

needed, corresponding to the random slope βWj . For unidimensional numerical integration, it

can often be more efficient to use nonadaptive quadrature with more nodes than adaptive

quadrature with fewer nodes. Consequently, 30 nonadaptive quadrature nodes were used.

4.1. Convergence

Using Mplus, a replication was deemed to have not converged if the output contained an

error beginning with “The model estimation did not terminate normally...”. Using the R/C++

implementation of the new method, there were no specific errors that occurred during

estimation in any of the replications. However, to ensure that the residual covariance matrices

remained positive definite during estimation, (residual) variances were constrained to be

greater than or equal to .0001 and the model was parameterized so (residual) correlations were

constrained to be within -.995 and .995. Therefore, the estimation was deemed to have not
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properly converged if any of the final parameter estimates were equal to their bound

constraint. Although this creates a slight contrast in the definition of nonconvergence for each

method, both definitions are ultimately equal from a practical standpoint in that they both

indicate that a particular set of parameter estimates are inadmissible.

The convergence rates for Mplus’ ML estimation and the ML estimation routine

developed here are displayed in Table 1. Overall, the ML estimation routine within Mplus had

substantially more convergence issues than the ML estimation method introduced here. For

example, out of all 3600 replications, the new method failed to converge only 27 times (rate

< .01), whereas the Mplus ML routine failed to converge 790 times (rate = .22). The most

problematic conditions were those with a level-1 sample size of nj = 5. Using the new method,

the impact of a small level-1 sample size could be somewhat offset by a larger level-2 sample

size or ICCx, as the routine only resulted in nonconvergence when the level-2 sample size and

ICCx were both small. This was not the case, however, with the Mplus ML routine. For

example, even when J = 400 and ICCx = .30, the Mplus ML routine failed to converge 62% of

the replications when nj = 5.

[Table 1 about here.]

4.2. Parameter estimates

The bias and root mean squared error (RMSE) for a subset of the parameter estimates

obtained using the newly introduced ML routine and the ML routine implemented within

Mplus are displayed in Tables 2 and 3, respectively. The bias and RMSE were computed using

only the estimates from the converged models. To save space, only the bias and RMSE for

β0W , βB, β1W , and ωβW are displayed, as these correspond to the parameters that are typically

of the most interest substantively.

[Table 2 about here.]

[Table 3 about here.]

The estimates of β0W are generally unbiased using both methods under all 36 simulation

conditions. Both estimation routines also recover ωβW quite well, though it is slightly

underestimated in conditions with small level-1 and level-2 samples sizes and a low ICCx. This
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is not surprising as ML estimation is known to produce underestimated level-2 variance

components when level-2 sample sizes are small (Maas & Hox, 2005).

When estimated using the ML routine developed here, the effects of the between-cluster

latent component of xij (αx) on the between-cluster latent component of yij and the random

slope βWj have seemingly non-negligible positive bias in the same conditions (i.e., small level-1

and level-2 sample sizes and low ICCx). As one or more of these factors increase, the bias

decreases. For example, when J = 200, nj = 5, and ICCx = .05, the estimated bias of βB is

.25. However, the bias drops to .14 when J = 400, .05 when ICCx = .10, and .05 when nj = 10.

Although the bias of βB and β1W when the model was fit using ML in Mplus tends to also

be somewhat larger in these conditions, it does not appear to change as systematically as a

function of the simulation conditions. For example, referring back to when J = 200, nj = 5,

and ICCx = .05, the estimated bias of βB is −.05 using Mplus. The bias actually increases (in

absolute value) when any one of the three simulation factors increase (e.g., moving from

J = 200 to J = 400 or from nj = 5 to nj = 10).

Overall, the ML estimation routine developed here performed better than the Mplus ML

routine in terms of convergence rate and bias, though there were some simulation conditions

(e.g., when nj = 5 and ICCx = .05) when the Mplus routine was less biased. In total, the new

estimation routine produced less biased estimates than Mplus in 78% of the 4 (parameters) ×

36 (simulation conditions) = 144 cells. Further, the RMSE using the new method was less

than that from Mplus in 79% of the cells. Thus, it appears that the newly developed routine

may be able to both improve the convergence rate and the reliability of the estimates for such

models (and simulation conditions).

5. Example

In this section, a more elaborate model is fit to data from the 2003 Program for

International Student Assessment (PISA), a large-scale study designed to test the knowledge

of 15-year-old students in mathematics, reading, and science (OECD, 2003). The students are

the level-1 units and schools are the level-2 units. After describing the data and specifying the

model, which highlights many of the advantages of the MSEM framework, the parameter

estimates obtained using the newly proposed ML estimation routine are presented and

compared to those obtained using ML estimation in Mplus.
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5.1. Data

For this analysis, data from a total of 9,729 students nested within 359 schools in Spain

are used. The dataset contains a mixture of item-level responses, as well as some scale scores.

The following student-level variables are used in this analysis: students’ perception of teacher

support (SPTS, ICC = 0.12), four items measuring students’ enjoyment related to

mathematics (ENJ1 to ENJ4, ICCs from 0.03 to 0.04), and students’ mathematics achievement

score (MATH, ICC = 0.18). Because these variables contain both within-school and

between-school variability, they can be modeled at both levels of analysis. Additionally, the

following school-level variables are used: quality of educational resources (QUAL) and three

items measuring teacher enthusiasm (ENTH1 to ENTH3).

5.2. Model

At the within-school level, interest lies in the relationship between students’ perception of

teacher support and mathematics achievement via enjoyment of mathematics. Further, the

relationship between enjoyment and achievement is expected to vary across schools. Variability

of this slope is modeled at the between-school level as a function of school-level student’s

perception of teacher support and quality of educational resources. Additional effects at the

between-school level include the between- counterparts of those modeled at the within-school

level, and the effects of teacher enthusiasm on perceptions of support, enjoyment, and

mathematics achievement. Lastly, quality of educational resources is included as a covariate

for all between-school effects.

Formally, the measurement model is specified as

ENTH1j

ENTH2j

ENTH3j

SPTSij
ENJ1ij
ENJ2ij
ENJ3ij
ENJ4ij

MATHij


=



ν1j
ν2j
ν3j
ν4
ν5
ν6j
ν7j
ν8j
0


+



1 0 0 0
λB21 0 0 0
λB31 0 0 0

0 1 0 0
0 0 1 0
0 0 λB63 0
0 0 λB73 0
0 0 λB83 0
0 0 0 1




α1j

α2j

α3j

α4j

+



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 λW62 0
0 λW72 0
0 λW82 0
0 0 1



η1ijη2ij
η3ij

+



0
0
0
0
ε5ij
ε6ij
ε7ij
ε8ij
0


,

(46)
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and the level-1 structural model isη1ijη2ij
η3ij

 =

 0 0 0
βW21 0 0
βW31 βW32j 0

η1ijη2ij
η3ij

+

ζ1ijζ2ij
ζ3ij

 . (47)

For this analysis, the following cross-level measurement invariance constraints are placed on

the loading parameters for the enjoyment factors: λB63 = λW62, λB73 = λW72, and

λB83 = λW82. Thus the between-school enjoyment factor is specified as a configural construct

(see, e.g. Stapleton & Johnson, 2019), which represents the latent school means on the

student-level enjoyment construct.

The vector of r = 11 level-2 random effects ηj includes all elements of the measurement

model and level-1 structural model that contain (only) a j subscript. These random effects are

modeled via the level-2 structural model:

ν1j
ν2j
ν3j
ν6j
ν7j
ν8j
α1j

α2j

α3j

α4j

βW32j



=



µν1
µν2
µν3
µν6
µν7
µν8
0
0
0
µα4

µβW32



+



0 . . . 0 0 0 0 0
0 . . . 0 0 0 0 0
0 . . . 0 0 0 0 0
0 . . . 0 0 0 0 0
0 . . . 0 0 0 0 0
0 . . . 0 0 0 0 0
0 . . . 0 0 0 0 0
0 . . . 0 βB87 0 0 0
0 . . . 0 βB97 βB98 0 0
0 . . . 0 βB10,7 βB10,8 βB10,9 0
0 . . . 0 βB11,7 0 0 0





ν1j
ν2j
ν3j
ν6j
ν7j
ν8j
α1j

α2j

α3j

α4j

βW32j



+



0
0
0
0
0
0
γB7

γB8

γB9

γB10

γB11



QUALj+



ζν1j
ζν2j
ζν3j
ζν6j
ζν7j
ζν8j
ζα1j

ζα2j

ζα3j

ζα4j

ζβW32j



.

(48)

Except for the freely estimated residual covariance (ωα4,βW32
) between the school-level math

achievement variable (α4) and the random slope (βW32), all residuals at both levels are

constrained to have covariances of zero. Since there is very little remaining between-school

variability within the first enjoyment item (ENJ1) after accounting for the enjoyment factor,

the residual variance for this item at the between-school level is constrained to 0. Thus, ν5 is

fixed, rather than random.

The random slope from within-school enjoyment to math achievement is modeled as a

function of school-level perceptions of support and quality of educational resources, so the

effect is conditional and the interpretation of the intercept (i.e., µβW32
) depends on the

centering of support and resources. Therefore, when support is decomposed into latent within-

and between- components, the between- level component is modeled as a sum of an intercept

and a between- latent variable with mean 0, rather than an intercept fixed to 0 and a between-
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latent variable with an estimated mean. Further, quality of educational resources was mean

centered. Consequently, the conditional effect µβW32
is interpreted as the expected

within-school effect of enjoyment on math for a school with average school-level perceptions of

support and quality of educational resources.

This model specification results in a total of 48 freely estimated parameters (9 at the

within-school level, 36 at the between-school level, and 3 factor loadings constrained to be

equal at the within- and between-school levels). A path digram corresponding to the model is

displayed in Figure 1. The diagram follows similarly to that used within the Mplus User Guide

(L. K. Muthén & Muthén, 2017) and within publications utilizing MSEM (see, e.g., Preacher,

Zyphur, & Zhang, 2010; Preacher et al., 2016). Observed variables are represented using

rectangles and latent variables (i.e., factors and random effects) are represented using circles.

The outer solid and dotted rectangles correspond to the unit at which the included variables

vary. Here, the solid rectangle corresponds to between-school variability and the dotted

rectangle corresponds to within-school variability. The observed student perception,

enjoyment, and math achievement variables are within both rectangles, as they contain both

within- and between-school variability, whereas the observed teacher enthusiasm variables only

contain between-school variability. Lastly, the solid black circle on the path from η2ij to η3ij

indicates that this slope is a random variable. It varies across schools, and so is represented as

a latent variable (labeled βW32j) at the between-school level.

[Figure 1 about here.]

Interestingly, this model utilizes all four of the advantages of the MSEM framework

discussed in Section 2.1. First, the model is multivariate in that many response variables are

simultaneously modeled. Second, factor models are used at the within- and between-school

levels to model student enjoyment and a factor model is used at the between-school level to

model teacher enthusiasm. Thus, random measurement error and unique variability for the

individual items are separated from the latent factors. Third, level-2 response variables (the

teacher enthusiasm items) are modeled. Lastly, a latent decomposition (i.e., latent centering) is

used for students’ perception of teacher support. By using the latent school-level means rather

than the observed means, sampling error is reduced from the between-school component which

ultimately reduces potential bias in the corresponding estimated between-school effects.
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5.3. Parameter estimates

The parameter estimates obtained using the new estimation routine for the within- and

between-school effects for the model are displayed in Tables 4 and 5, respectively. At the

within-school level, there is a positive effect of students’ perception of teacher support on

enjoyment of mathematics (βW21 = 0.17), but a negative effect on mathematics performance

(βW31 = −0.12) when controlling for enjoyment. The effect of enjoyment on performance,

holding support constant, was modeled as a function of school-level support, the schools’

quality of education resources, and a random school-specific residual. For schools with average

support and resources, the effect of enjoyment on mathematics achievement is positive

(µβW32
= 0.67). Holding resources constant, the effect of enjoyment is stronger for schools with

higher average perceptions of support (βB11,8 = 0.17). There is not enough evidence to suggest

that the relationship is dependent on quality of educational resources (γB11 = 0.04), but there

is additional between-school variability in the effect not accounted for (ωβW32
= 0.06).

[Table 4 about here.]

At the between-school level, quality of educational resources is a positive predictor of

teacher enthusiasm (γB7 = 0.11) and math achievement (γB10 = 0.17), but not students’

perception of teacher support (γB8 = −0.01) or student enjoyment of mathematics

(γB9 = −0.01). Teacher enthusiasm is positively associated with students’ perception of

teacher support (βB87 = 0.14), but not student enjoyment of mathematics (βB97 = 0.02).

Teacher support is, on the other hand, a positive predictor of enjoyment (βB98 = 0.15).

Finally, teacher enthusiasm (βB10,7 = 0.26) and student enjoyment (βB10,9 = 2.42) are positive

predictors of mathematics achievement, whereas students perception of teacher support is a

negative predictor (βB10,8 = −0.70).

[Table 5 about here.]

5.4. Comparison with Mplus

The parameter estimates obtained using ML estimation in Mplus are also displayed in

Tables 4–5. In general, the estimates are nearly identical to those obtained using the newly

proposed estimation routine, though there are some slightly larger (though not substantive)
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differences in some of the estimated between-school structural parameters. There is also a

slight difference between the log-likelihood using the new method (−69657.64) and the Mplus

routine (−69656.34). Because both methods utilize ML estimation, the difference can be

attributable to how well the quadrature method approximates the log-likelihood (as well as

minor differences in convergence settings, etc.).

In Mplus, the model required eight dimensions of numerical integration and so three

adaptive quadrature nodes per dimension (the maximum due to computer memory

constraints) were used to approximate the log-likelihood function. In contrast, the new method

only required one dimension of numerical integration, corresponding to the nonlinear random

effect βW32j . As such, seven nonadaptive quadrature nodes were used to obtain the parameter

estimates. Refitting the model using the new method with 25 nonadaptive nodes resulted in

parameter estimates and a log-likelihood equivalent to at least two decimal places, indicating

that the approximation using the new method is perhaps more accurate than the

approximation from Mplus’ ML routine. Although the slight deviation between the

log-likelihoods obtained using the two methods results in negligible differences in parameter

estimates, it may be more influential when comparing competing models using a likelihood

ratio test.

The most dramatic difference between the newly proposed ML estimation routine and ML

estimation in Mplus is the estimation time. Within Mplus, it took several hours to obtain

parameter estimates. With the new routine, however, parameter estimates could be obtained

in under seven minutes. Thus, although both estimation routines converged and produced

nearly equivalent results, the newly proposed method is substantially faster due to a reduction

in the dimension of numerical integration from eight dimensions to one dimension. The

difference in estimation time can become especially prominent when multiple models must be

fit, such as when comparing competing models or conducting simulation studies.

6. Discussion

A ML estimation routine for two-level SEMs with random slopes for observed and latent

covariates was proposed. The routine relies on a reformulation of the likelihood function so

that some of the random effects can be integrated analytically. A brief simulation study

demonstrated that the new method can recover the true parameters within most of the
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simulated conditions and also reduce some of the convergence issues that have plagued ML

estimation of such models. Further, a complex MSEM was fit to a real data set, which

highlighted some ways in which MSEMs can be used to address interesting substantive

research questions. In this section, alternative computational methods are discussed and

limitations are addressed. The paper concludes with recommended future directions for the

estimation of MSEMs and the assessment of the resulting parameter estimates.

6.1. Alternative computational methods

Two major decisions were made in the construction of the ML estimation routine. These

include the decision to either directly or indirectly maximize the likelihood function and the

method used for reducing the dimension of numerical integration.

The major computational hurdle within the estimation routine presented within this

paper is the need for numerical integration. This computation hurdle is also present via

indirect maximization methods. For example, the intractable integral is contained within the

E-step of the EM algorithm. Although direct methods were used here, it is also possible to

restructure the E-step integral to aid in numerical integration in a similar method to what was

used in the direct maximization algorithm. Thus, the major contribution of this paper, which

demonstrates a method for reducing the dimension of numerical integration required for the

general MSEM model, is also applicable to indirect maximization methods in addition to the

specific estimation routine presented here.

The method used for reducing the dimension of numerical integration is essentially an

extension of the method presented by du Toit and Cudeck (2009) to the MSEM context. The

restructuring of the likelihood function relied upon the (conditional) conjugacy of the

distributions of the linear random effects and data. An alternative method for restructuring

the likelihood function for latent variable models with intractable integrals has been suggested

by Rijmen (2009), who generalized a method proposed by Gibbons and Hedeker (1992). This

method relies upon graph theory to determine the dependencies of the random effects and,

depending on their structure, reformulates the likelihood so that the dimension of integration

is reduced. This method has been particularly useful for multidimensional item response

theory models (Gibbons & Hedeker, 1992; Rijmen, 2009; Cai, 2010; Rijmen, 2010). The graph

theory methodology may be useful for extending the MSEM to account for other types of data
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and designs, such as those discussed in the next section.

6.2. Limitations

The MSEM presented, as well as the proposed estimation routine, are not without their

limitations. First, although no distributional assumptions are made about any observed

covariates in the model (i.e., xij and xj), all response variables (yij and zj) are assumed to be

normally distributed conditional on the random effects, which are also assumed to be normally

distributed. Extending the model to account for non-normal data is certainly possible, but

adds to the computational complexity of estimating the model parameters. As discussed, the

proposed estimation routine relies upon the conjugacy between the normally distributed

random effects and conditionally normally distributed response variables to reformulate the

likelihood function so that many of the integrals can be computed analytically. This

reformulation is not possible for response variables that depend on normally distributed latent

variables, but are not conditionally normal. Therefore, the vector of random effects that must

be numerically integrated would need to be expanded to include those that are predictors of

categorical and count variables. Depending on the specific model, the dimension of numerical

integration required may be too high to practically estimate the model parameters using ML.

Second, this paper focused on the general two-level SEM. Although some three-level

growth models are possible to fit within the framework, the model discussed here does not

easily generalize to other types of three-level models. Yet, data collected on higher order

structures are fairly common in psychological, educational, and health science research. The

two-level SEM could be extended to allow for additional levels of nesting, as is allowed within

the GLLAMM framework (Rabe-Hesketh et al., 2004) and Mplus (L. K. Muthén & Muthén,

2017). In such a circumstance the random effects that need to be numerically integrated may

be nested and so the method of numerically integrating nested random effects discussed by

Rabe-Hesketh, Skrondal, and Pickles (2005) could be used.

Finally, the approach as documented in Section 3 did not account for missing data.

However, it is relatively straightforward to extend the likelihood calculation to account for

models in which the data can be assumed to be missing at random. The necessary extension is

sketched in the Appendix.
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6.3. Future directions

There are a few programming extensions that could be implemented to speed up the

estimation routine. For example, analytically computing the derivatives of the likelihood

function with respect to the parameters can reduce the estimation time. Without providing

analytic derivatives, the derivatives are either approximated using numerical methods or

computed using automatic differentiation. Computing the derivatives analytically is typically

faster than either of these two approaches. Another method for speeding up estimation

includes the use of parallel processing. The likelihood function can easily be broken into

independent components (e.g., the likelihood contribution from each cluster) that can be

computed in parallel.

In the modeling context, the performance of these complex MSEMs are still relatively

unknown. The estimation routine presented allows for a much broader range of potential

models to be estimated than what was currently possible using ML, but the simulation study

presented was relatively basic compared to the possible models that can be fit. The next task

is better understanding the conditions for which the parameter estimates are “good” and,

more importantly, when they are not. As demonstrated here and elsewhere, the performance of

such estimates likely depend on many things including, but not limited to, the level-1 and

level-2 sample sizes, the ICCs, the amount of measurement error, and the complexity of the

model. The effects of each of these components can, and should, be assessed via more

comprehensive simulation studies. That is, now that it is practical to obtain ML parameter

estimates for such complex MSEMs, these estimates should fully be assessed and compared to

other estimation methods (e.g., Bayesian estimation).
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Appendix

In this section, methods for adapting the estimation routine to allow for data missing at

random are sketched. As in Section 2, suppose there are k level-2 variables zj and p level-1

variables yij . However, now consider that one or more elements within these vectors for a

given j or ij may be missing. Suppose cluster j has kj non-missing elements of zj and

individual i in cluster j has pij non-missing elements in yij .

Define Kj (kj × k) and Mij (pij × p) to be zero-one matrices that select the non-missing

elements of zj and yij , respectively. For example, suppose k is 4 and cluster j′ is missing the
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third element of zj′ , so that

Kj′ =

1 0 0 0
0 1 0 0
0 0 0 1

 (A1)

can be used to select the non-missing subset of zj′ :

z∗j′ = Kj′zj′ =

1 0 0 0
0 1 0 0
0 0 0 1



z1j′

z2j′

−
z4j′

 =

z1j′z2j′

z4j′

 . (A2)

The matrix Mij performs the same role as Kj , except it is used to select non-missing elements

of yij rather than zj . Thus, z∗j = Kjzj will be used in place of zj and y∗j = Mijyij will be used

in place of yij .

By premultiplying some of the other model matrices within the likelihood calculation by

Kj or Mij , the estimation routine can be adapted to account for the missing elements within

zj and yij . Specifically, for Equations 24-25, replace µzj and µyij with Kjµzj and Mijµyij ,

respectively. Within Equations 26–30 replace G̃ and Q̃∗ij with KjG̃ and MijQ̃
∗
ij , and replace

Σ∗W with Σ∗Wij = MijΣ
∗
WM′ij . Lastly, replace Inj ⊗ Σ∗W in Equation 26 with

nj⊕
i=1

Σ∗Wij , (A3)

where ⊕ is the direct sum. Using these replacements, the simplified expressions for |Σdj | and

ε′djΣ
−1
dj
εdj in the new conditional log-likelihood

f(dj |β̃Wj) = (2π)−(
∑
i pij+kj)/2|Σdj |

−1/2exp

{
− 1

2
ε′djΣ

−1
dj
εdj

}
(A4)

are

|Σdj | =
{ nj∏
i=1

|Σ∗Wij |
}
|Σξ•βW ||Σ

−1
ξ•βW + Aj ||Σzz.y|, (A5)

and

ε′djΣ
−1
dj
εdj =

nj∑
i=1

ε′yijΣ
∗−1
Wijεyij + p′jHjpj

− 2p′jC
′
jΣξ•βW G̃′Σ−1zz.yεzj

+ ε′zjΣ
−1
zz.yεzj . (A6)
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Figure 1.
A path diagram corresponding to the PISA model. To reduce clutter, item-specific level-1 and level-2 residual
variances, as well as item intercepts and factor means, have been omitted.
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New Method Mplus
J nj .05 .10 .20 .30 .05 .10 .20 .30

100 5 13 4 – – 41 39 28 37
10 2 – – – 10 9 5 9
25 – – – – 10 11 5 15

200 5 8 – – – 64 47 34 58
10 – – – – 14 14 4 9
25 – – – – 12 10 13 14

400 5 – – – – 69 38 42 62
10 – – – – 11 10 3 6
25 – – – – 10 5 4 18

Table 1.
Percent of replications in the latent covariate simulation for which the model did not converge. Each column
corresponds to a different ICCx (.05, .10, .20, .30). A dash indicates that all reps in the corresponding condition
properly converged.
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J nj ICCx β0W βB β1W ωβW
100 5 0.05 -0.02 (0.12) 0.34 (1.67) 0.32 (1.71) -0.05 (0.10)

0.10 -0.01 (0.08) 0.19 (0.59) 0.06 (0.51) -0.02 (0.09)
0.20 -0.01 (0.09) 0.05 (0.25) 0.00 (0.26) -0.02 (0.09)
0.30 -0.01 (0.08) 0.01 (0.13) -0.01 (0.18) -0.03 (0.10)

10 0.05 0.00 (0.07) 0.24 (0.80) 0.04 (0.69) -0.02 (0.06)
0.10 0.00 (0.06) 0.03 (0.28) -0.02 (0.27) -0.02 (0.06)
0.20 0.01 (0.07) 0.02 (0.16) -0.03 (0.17) -0.01 (0.05)
0.30 -0.01 (0.08) 0.01 (0.13) 0.00 (0.12) -0.02 (0.07)

25 0.05 0.00 (0.06) 0.03 (0.37) -0.09 (0.41) 0.00 (0.05)
0.10 0.01 (0.06) 0.00 (0.20) 0.00 (0.23) -0.02 (0.05)
0.20 0.00 (0.06) 0.01 (0.13) 0.00 (0.13) -0.01 (0.05)
0.30 0.00 (0.06) 0.01 (0.10) 0.00 (0.11) -0.01 (0.05)

200 5 0.05 0.00 (0.06) 0.25 (1.01) 0.10 (0.79) -0.02 (0.06)
0.10 0.00 (0.05) 0.05 (0.35) 0.00 (0.25) -0.01 (0.06)
0.20 0.00 (0.06) 0.00 (0.14) -0.01 (0.16) -0.01 (0.06)
0.30 -0.01 (0.07) 0.01 (0.10) -0.03 (0.13) -0.01 (0.08)

10 0.05 0.01 (0.05) 0.05 (0.43) 0.06 (0.36) 0.00 (0.04)
0.10 0.00 (0.05) 0.05 (0.20) 0.05 (0.18) -0.01 (0.04)
0.20 0.00 (0.05) 0.01 (0.12) 0.00 (0.14) 0.00 (0.04)
0.30 0.00 (0.05) 0.01 (0.08) 0.02 (0.10) -0.01 (0.04)

25 0.05 0.00 (0.04) 0.04 (0.22) 0.04 (0.23) 0.00 (0.04)
0.10 0.00 (0.04) 0.00 (0.15) -0.01 (0.16) -0.01 (0.03)
0.20 0.00 (0.04) 0.00 (0.09) -0.02 (0.10) 0.00 (0.04)
0.30 0.00 (0.04) 0.00 (0.06) -0.01 (0.07) 0.00 (0.03)

400 5 0.05 0.00 (0.04) 0.14 (0.49) 0.04 (0.47) -0.01 (0.04)
0.10 0.00 (0.04) 0.00 (0.22) 0.03 (0.19) 0.00 (0.04)
0.20 0.00 (0.04) 0.01 (0.12) 0.00 (0.12) 0.00 (0.04)
0.30 0.00 (0.04) 0.00 (0.07) -0.01 (0.09) 0.00 (0.05)

10 0.05 0.00 (0.03) 0.02 (0.23) -0.02 (0.24) 0.00 (0.03)
0.10 0.00 (0.04) 0.02 (0.15) 0.02 (0.13) 0.00 (0.03)
0.20 0.00 (0.03) 0.00 (0.08) -0.01 (0.08) 0.00 (0.03)
0.30 0.00 (0.04) 0.01 (0.07) 0.00 (0.07) 0.00 (0.04)

25 0.05 0.00 (0.03) 0.01 (0.13) -0.02 (0.17) 0.00 (0.03)
0.10 0.00 (0.03) -0.01 (0.09) 0.01 (0.11) -0.01 (0.03)
0.20 0.00 (0.03) 0.00 (0.06) 0.00 (0.07) 0.00 (0.03)
0.30 0.00 (0.03) 0.00 (0.04) -0.01 (0.06) 0.00 (0.03)

Table 2.
Bias (RMSE) using the new ML estimation routine. Population parameters are β0W = −0.50, βB = 0.50,
β1W = 0.25, and ωβW = 0.30.
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J nj ICCx β0W βB β1W ωβW
100 5 0.05 -0.02 (0.10) 0.00 (1.36) 0.28 (1.20) -0.04 (0.11)

0.10 0.00 (0.09) -0.07 (0.47) 0.17 (0.54) -0.03 (0.10)
0.20 0.01 (0.09) -0.06 (0.23) 0.05 (0.28) 0.01 (0.14)
0.30 -0.02 (0.07) 0.03 (0.14) 0.09 (0.18) -0.04 (0.17)

10 0.05 0.00 (0.08) 0.11 (1.00) 0.20 (0.96) -0.02 (0.07)
0.10 0.00 (0.06) 0.01 (0.26) 0.05 (0.32) -0.02 (0.06)
0.20 0.00 (0.07) 0.03 (0.16) 0.00 (0.19) -0.01 (0.06)
0.30 -0.02 (0.09) 0.02 (0.13) 0.03 (0.13) -0.01 (0.07)

25 0.05 -0.01 (0.06) 0.13 (0.52) -0.05 (0.50) 0.00 (0.05)
0.10 0.00 (0.06) 0.04 (0.23) 0.03 (0.25) -0.01 (0.05)
0.20 -0.01 (0.06) 0.03 (0.14) 0.02 (0.14) 0.00 (0.06)
0.30 -0.01 (0.06) 0.03 (0.11) 0.02 (0.12) -0.01 (0.05)

200 5 0.05 0.01 (0.06) -0.05 (1.13) 0.40 (1.56) -0.03 (0.08)
0.10 0.01 (0.06) -0.09 (0.27) 0.19 (0.32) -0.04 (0.11)
0.20 0.03 (0.07) -0.18 (0.26) 0.04 (0.19) 0.03 (0.11)
0.30 -0.01 (0.08) 0.01 (0.12) 0.07 (0.13) -0.04 (0.09)

10 0.05 0.01 (0.05) -0.15 (0.30) 0.16 (0.42) 0.00 (0.04)
0.10 0.00 (0.05) 0.07 (0.21) 0.15 (0.26) -0.01 (0.05)
0.20 -0.01 (0.05) 0.03 (0.12) 0.04 (0.15) -0.01 (0.04)
0.30 -0.01 (0.05) 0.03 (0.09) 0.03 (0.10) 0.00 (0.04)

25 0.05 0.00 (0.04) 0.12 (0.29) 0.07 (0.27) 0.00 (0.04)
0.10 -0.01 (0.04) 0.05 (0.18) 0.02 (0.19) -0.01 (0.03)
0.20 0.00 (0.04) 0.00 (0.12) 0.00 (0.11) 0.01 (0.04)
0.30 -0.01 (0.04) 0.02 (0.07) 0.00 (0.07) 0.01 (0.04)

400 5 0.05 0.01 (0.04) -0.30 (0.37) 0.12 (0.36) -0.01 (0.04)
0.10 0.01 (0.04) -0.15 (0.25) 0.22 (0.28) -0.06 (0.07)
0.20 0.02 (0.04) -0.14 (0.23) 0.08 (0.14) 0.03 (0.11)
0.30 0.00 (0.04) 0.01 (0.06) 0.07 (0.09) -0.02 (0.06)

10 0.05 0.00 (0.03) -0.10 (0.21) 0.08 (0.32) 0.00 (0.03)
0.10 -0.01 (0.04) 0.06 (0.16) 0.13 (0.20) 0.00 (0.03)
0.20 -0.01 (0.03) 0.01 (0.10) 0.03 (0.09) -0.01 (0.03)
0.30 -0.01 (0.04) 0.02 (0.07) 0.01 (0.07) 0.00 (0.04)

25 0.05 -0.01 (0.03) 0.08 (0.18) 0.02 (0.21) 0.00 (0.03)
0.10 -0.01 (0.03) 0.02 (0.11) 0.05 (0.13) 0.00 (0.03)
0.20 -0.01 (0.03) 0.01 (0.09) 0.02 (0.08) 0.01 (0.04)
0.30 -0.01 (0.03) 0.02 (0.05) 0.00 (0.06) 0.01 (0.03)

Table 3.
Bias (RMSE) using the ML estimation routine implemented within Mplus. Population parameters are β0W =
−0.50, βB = 0.50, β1W = 0.25, and ωβW = 0.30.
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Effect Parameter New (SE) Mplus (SE)

SPTS → ENJ βW21 0.172 (0.008) 0.173 (0.008)
SPTS → MATH βW31 −0.116 (0.017) −0.117 (0.017)
ENJ → MATH βW32j – –
ENJ2 Loading λW62 0.899 (0.010) 0.899 (0.010)
ENJ3 Loading λW72 1.152 (0.012) 1.153 (0.012)
ENJ4 Loading λW82 0.874 (0.011) 0.875 (0.011)

Var(ENJ1) θ5 0.251 (0.005) 0.251 (0.005)
Var(ENJ2) θ6 0.211 (0.004) 0.211 (0.004)
Var(ENJ3) θ7 0.161 (0.004) 0.160 (0.004)
Var(ENJ4) θ8 0.311 (0.005) 0.311 (0.005)
Var(SPTS) ψ1 0.908 (0.013) 0.908 (0.013)
Var(ENJ) ψ2 0.441 (0.010) 0.440 (0.010)

Var(MATH) ψ3 2.135 (0.032) 2.135 (0.032)

Log-likelihood −69657.64 −69656.34
Parameters 48 48

Dim. of Integration 1 8
Estimation Time 6.76 minutes 5.43 hours

Table 4.
Parameter estimates (standard errors) for the within-school effects of the PISA example obtained using the newly
proposed ML estimation routine and the ML estimation routine implemented within Mplus.
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Effect Parameter New (SE) Mplus (SE)

ENTH → SPTS βB87 0.143 (0.063) 0.148 (0.066)
ENTH → ENJ βB97 0.020 (0.029) 0.019 (0.029)

ENTH → MATH βB10,7 0.261 (0.116) 0.267 (0.117)
SPTS → ENJ βB98 0.152 (0.032) 0.157 (0.033)

SPTS → MATH βB10,8 −0.695 (0.146) −0.739 (0.158)
SPTS → βW32j βB11,8 0.169 (0.087) 0.167 (0.091)
ENJ → MATH βB10,9 2.422 (0.506) 2.517 (0.536)

QUAL → ENTH γB7 0.114 (0.024) 0.144 (0.025)
QUAL → SPTS γB8 −0.010 (0.022) −0.011 (0.023)
QUAL → ENJ γB9 −0.005 (0.010) −0.005 (0.010)

QUAL → MATH γB10 0.168 (0.040) 0.168 (0.041)
QUAL → βW32j γB11 0.035 (0.027) 0.035 (0.027)
ENTH2 Loading λB21 0.989 (0.101) 0.989 (0.101)
ENTH3 Loading λB31 0.629 (0.082) 0.629 (0.082)
ENJ2 Loading λB63 0.899 (0.010) 0.899 (0.010)
ENJ3 Loading λB73 1.152 (0.012) 1.153 (0.012)
ENJ4 Loading λB83 0.874 (0.011) 0.875 (0.011)
Var(ENTH1) ων1 0.129 (0.017) 0.128 (0.017)
Var(ENTH2) ων2 0.078 (0.016) 0.078 (0.016)
Var(ENTH3) ων3 0.223 (0.018) 0.223 (0.018)
Var(ENJ2) ων6 0.004 (0.001) 0.004 (0.001)
Var(ENJ3) ων7 0.003 (0.001) 0.003 (0.001)
Var(ENJ4) ων8 0.007 (0.002) 0.007 (0.002)
Var(ENTH) ωα1 0.152 (0.023) 0.152 (0.023)
Var(SPTS) ωα2 0.122 (0.012) 0.122 (0.013)
Var(ENJ) ωα3 0.015 (0.003) 0.014 (0.003)

Var(MATH) ωα4 0.366 (0.040) 0.362 (0.040)
Var(βW32j) ωβW32

0.063 (0.020) 0.062 (0.020)
Cov(MATH,βW32j) ωα4,βW32

−0.014 (0.019) −0.014 (0.019)
Intercept(ENTH1) µν1 2.931 (0.028) 2.931 (0.028)
Intercept(ENTH2) µν2 3.093 (0.025) 3.092 (0.025)
Intercept(ENTH3) µν3 3.134 (0.028) 3.134 (0.028)
Intercept(SPTS) ν4 −0.088 (0.021) −0.088 (0.021)
Intercept(ENJ1) ν5 2.061 (0.011) 2.061 (0.011)
Intercept(ENJ2) ν6 1.873 (0.011) 1.872 (0.010)
Intercept(ENJ3) ν7 2.172 (0.013) 2.171 (0.012)
Intercept(ENJ4) ν8 2.557 (0.011) 2.557 (0.011)

Intercept(MATH) µα4 4.916 (0.040) 4.913 (0.039)
Intercept(βW32j) µβW32

0.665 (0.029) 0.666 (0.028)

Table 5.
Parameter estimates (standard errors) for the between-school effects of the PISA example obtained using the
newly proposed ML estimation routine and the ML estimation routine implemented within Mplus.


