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EFFICIENT LIKELIHOOD ESTIMATION OF GENERALIZED STRUCTURAL

EQUATION MODELS WITH A MIX OF NORMAL AND NONNORMAL RESPONSES

Abstract

A maximum likelihood estimation routine is presented for a generalized

structural equation model that permits a combination of response variables from

various distributions (e.g., normal, Poisson, binomial, etc.). The likelihood

function does not have a closed-form solution and so must be numerically

approximated, which can be computationally demanding for models with several

latent variables. However, the dimension of numerical integration can be reduced

if one or more of the latent variables do not directly affect any nonnormal

endogenous variables. The method is demonstrated using an empirical example

and the full estimation details, including first-order derivatives of the likelihood

function, are provided.

Key words: Structural equation modeling, latent variable modeling, generalized

linear models, maximum likelihood estimation
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1. Introduction

Structural equation modeling (SEM) has become one of the most widely used

multivariate statistical modeling approaches within the social and behavioral sciences.

Within the traditional SEM framework, the latent variables and the observed variables,

conditional on the latent variables, are both assumed to be multivariate normally

distributed. Consequently, the marginal distribution of the data is also multivariate

normal, allowing for computationally efficient maximum likelihood (ML) estimation of the

model parameters. Such models are implemented in an ever-growing suite of commercial

software, such as LISREL (Jöreskog & Sörbom, 1996), EQS (Bentler, 2004), Mplus

(L. K. Muthén & Muthén, 2017), and Stata (StataCorp, 2019a), as well as open source

software, such as the lavaan (Rosseel, 2012), sem (Fox, Nie, & Byrnes, 2017), and OpenMx

(Neale et al., 2016) packages within the R computing environment (R Core Team, 2019).

However, behavioral research often involves a variety of nonnormal response variables,

including categorical and count outcomes. When the only type of categorical responses are

ordinal (including dichotomous), the SEM is typically formulated assuming that there are

multivariate normal latent responses underlying the discrete observations. Unfortunately,

ML estimation of the model parameters assuming latent responses requires an intractable

multidimensional integral, where the dimension of integration is equal to the number of

endogenous categorical variables (each with their own latent response). The intractable

integral can be avoided by using diagonally weighted least squares (DWLS; B. Muthén,

1984), a limited information approach, to estimate the model parameters.

Alternatively, several methodologists have advocated for a generalized latent variable

modeling approach, where the conditional distribution of the data given the latent

variables is modeled using a generalized linear model (GLM) formulation (Bartholomew &

Knott, 1999; Moustaki & Knott, 2000; Rabe-Hesketh, Skrondal, & Pickles, 2004;

L. K. Muthén & Muthén, 2017). This approach can be used for ordered and unordered

categorical variables, count variables, and others. Because an underlying latent variable is

not necessarily assumed for the observed variables, the DWLS estimation developed for

ordered categorical variables is typically not applicable. Instead, ML estimation is most
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commonly used for such models, where the likelihood function contains a multidimensional

integral with the dimension equal to the number of latent variables. This integral cannot

be computed in closed-form and so must be numerically approximated, which can be

computationally intensive for high dimensional problems.

Two of the most flexible and widely used general latent variable modeling frameworks

are those implemented within the Stata package gllamm (Rabe-Hesketh et al., 2004) and

Mplus (L. K. Muthén & Muthén, 2017). Although not exactly equivalent, there is large

overlap between each of the frameworks, particularly in regard to the model discussed here.

Both programs allow for ML estimation of generalized SEMs with a wide range of potential

outcome distributions, including normal, binomial, Poisson (and extensions that account

for overdispersion and zero-inflation), and others.

In addition to publishing a wide array of articles and books discussing the general

modeling framework and interesting applications (e.g., Skrondal & Rabe-Hesketh, 2003;

Rabe-Hesketh et al., 2004; Skrondal & Rabe-Hesketh, 2004; Zheng & Rabe-Hesketh, 2007),

the developers of gllamm have also provided many of the technical details related to ML

parameter estimation of generalized latent variable models as implemented in gllamm

(Rabe-Hesketh, Skrondal, & Pickles, 2002, 2005; Skrondal & Rabe-Hesketh, 2009). These

documents have likely contributed to the implementation of such methods into other

commercial and open-source software programs. Indeed, Stata has since released a gsem

function (StataCorp, 2019b) for generalized SEM that relies upon many of the technical

details provide by the gllamm developers and colleagues. The developers of Mplus have

also published several papers documenting recent advancements in Mplus and applications

of such advancements (e.g., B. O. Muthén, 2002; Asparouhov, Masyn, & Muthen, 2006;

B. Muthén & Asparouhov, 2008, 2011; B. O. Muthén, Muthén, & Asparouhov, 2017).

However, these documents do not always contain the technical details necessary for direct

software implementation by others. Two such details relevant to Mplus’ computational

advantage when estimating generalized SEMs are discussed here.

In gllamm and Stata’s gsem function, the dimension of numerical integration required

for ML estimation of generalized SEMs (and traditional SEMs) is equal to the number of

latent variables in the model, regardless of the specific model structure and the
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distributions of the endogenous variables. In Mplus, on the other hand, the dimension of

numerical integration required is equal to only those latent variables that directly affect

nonnormal responses. Thus, for models that include a mix of normal and nonnormal

responses, the estimation method in Mplus may be less computationally demanding than

that in gllamm and gsem. Another notable advantage of Mplus (and the gsem function)

relative to gllamm is the use of analytic derivatives rather than numerical derivatives,

which can be computationally costly for models with many freely estimated parameters.

Unfortunately, neither the dimension reduction technique nor the analytic derivatives for

the generalized SEM implemented within Mplus have been publicly documented. This has

likely stunted the implementation of such methods into other software packages.

The purpose of this paper is to provide all of the technical details necessary for

efficient ML estimation of generalized SEMs. In Section 2, a generalized SEM framework

incorporating both normal and nonnormal response variables is presented. An ML

estimation routine for the model is developed within Section 3. For certain models it is

shown that, by reformulating the likelihood function, a subset of the latent factors can be

integrated out of the likelihood function analytically. This method, which appears to be

comparable to the method implemented within Mplus, is an adaptation of the numerical

integration dimension reduction technique proposed by du Toit and Cudeck (2009) in the

context of nonlinear mixed effects models. Two example models are then fit within

Section 4, where estimates obtained using Mplus, gsem, and the method introduced here

are compared. The paper concludes with a discussion in Section 5. To aid in software

implementation of such methods, the derivatives required for approximating and

maximizing the log-likelihood function are presented in Appendices A and B, respectively.

Finally, steps for reparameterizing the model to take full advantage of the dimension

reduction technique are detailed in Appendix C.

2. Model

The generalized SEM that will be the focus here can be formulated by first starting

with the standard SEM for conditionally normal endogenous variables. Let yi denote a

p-dimensional vector of observed continuous variables for individual i (i = 1, ..., N) that are
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modeled as:

yi = νy + Λyηi + Kyxi + εi, (1)

where νy is a p-dimensional vector of intercepts, Λy is a p×m factor loading matrix

relating the m-dimensional vector of latent variables ηi to the observed dependent

variables, Ky is a p× q matrix relating the q observed covariates xi to the observed

dependent variables, and εi is a p-dimensional vector of random errors where it is assumed

that εi ∼ N (0,Θ). The latent variables ηi are modeled via the structural model:

ηi = α+ Bηi + Γxi + ζi, (2)

where α is an m-dimensional vector of factor means or intercepts, B is an m×m matrix

relating the latent variables to one another, Γ is an m× q matrix relating the observed

covariates to the latent variables, and ζi an an m-dimensional vector of random latent

variable disturbances, such that ζi ∼ N (0,Ψ) and Cov(ηi, εi) = 0.

However, in addition to the p continuous and (conditionally) normally distributed

observed variables yi, suppose there are k nonnormal (and potentially categorical)

variables ui = (ui1, ui2, ..., uik)
′. Let fj(uij|ξi) denote any legitimate probability mass or

density function for uij (j = 1, ..., k), which depends on the r-dimensional vector

ξi = νu + Λuηi + Kuxi, (3)

where νu is r × 1, Λu is r ×m, and Ku is r × q. Since ξi depends on the random vector ηi,

so too does uij. Hence the u subscripts for νu, Λu, and Ku.

A generalized linear model can be formulated for the conditional distribution of uij by

specifying the probability distribution of uij as a member of the exponential family and

defining gj(E(uij|ξi)) = ξij, where gj(·) is an appropriate link function and ξij is the jth

element of ξi. For example, if uij is dichotomous, the response may be modeled as a

Bernoulli random variable with mean

E(uij|ξi) = g−1j (ξij) =
exp(ξij)

1 + exp(ξij)
, (4)

resulting in a logistic regression. A probit regression could instead be specified by changing

the link function gj(·) to the probit link. Similarly, a Poisson regression model can be
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specified for a count outcome uij by specifying fj(uij|ξi) as Poisson with mean

E(uij|ξi) = exp(ξij).

To complete the general model specification, it is assumed that the nonnormal

responses ui are independent of one another and yi conditional on the latent variables ηi,

f(yi,ui|ηi) = f(yi|ηi)f(ui|ηi) = f(yi|ηi)
∏
j

fj(uij|ηi), (5)

where fj(uij|ηi) is used in place of fj(uij|ξi) to highlight that uij is dependent on the latent

variables ηi (by way of one or more elements of ξi), which can be used to model

dependency between ui and yi.

2.1. Modeling more complex response types

The model for uij is actually more flexible than a typical generalized linear (latent)

model specification in two important ways. First, there is no requirement that the

distribution of uij must be a member of the exponential family. For example, if uij is

censored continuous data, a Tobit regression model could be specified for f(uij|ξi).

Alternatively, if uij is a multiple-choice test item, a three parameter item response theory

(IRT) model could be specified. Second, as can be noted by the different dimensions of ui

and ξi, the model allows for more complex processes to be modeled because the

distribution of uij may depend on more than one element of ξi. Two common scenarios in

which it may be useful to allow uij to depend on multiple elements of ξi include the

analysis of polytomous item response data and zero-inflated count data.

For example, suppose that uij is a zero-inflated count variable (i.e., the variable has an

excess of zeros than would be expected under a typical count distribution such as Poisson

or negative Binomial). A zero-inflated count model theorizes that a zero response may arise

through one of two distinct processes. The first process corresponds to whether there is a

chance of a non-zero response, and the second process corresponds to the count response

given that it may be non-zero. A common example of a zero-inflated count variable is the

number of alcoholic beverages consumed by an individual over a particular weekend. The

zero/non-zero process would correspond to whether an individual consumes alcohol. All

individuals who do not consume alcohol would have a zero probability of drinking that
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particular weekend, whereas alcohol consumers may drink one or more alcohol beverages.

The count process would then correspond to the number of beverages consumed by those

who actually drink alcohol. But just because an individual drinks alcohol, meaning they

have non-zero probability of drinking one or more beverages, does not necessarily imply

that their responses is non-zero. They may be an alcohol consumer, but abstained that

particular weekend. Thus, a zero response may arise because either the individual is not a

drinker or the individual is a drinker, but did not happen to drink that particular weekend.

Models for zero-inflated count data are used to better understand heterogeneity within

each of these two distinct processes, and different variables may be predictors of each. A

zero-inflated Poisson (ZIP; Lambert, 1992) model uses either a logit or probit regression for

the zero/non-zero process and a Poisson regression for the count process. Alternatively, a

negative Binomial distribution can be specified for the counts to allow for overdispersion.

Both of these models are easy to formulate within the generalized SEM presented here.

The ZIP model can be specified for uij as:

f(uij = z|ξ) =

 ξ1i + (1− ξ1i)exp(−ξ2i) if z = 0

(1− ξ1i) ξ
uij
2i exp(−ξ2i)

uij !
if z > 0

where ξ1i corresponds to the zero/non-zero process and ξ2i corresponds to the count

process. Because ξi is a function of ηi, both zero-inflated IRT (Wang, 2010) and growth

models (H. Liu, 2007) may be specified. The analysis of zero-inflated count data is just one

of many potential examples that demonstrate the flexibility of the modeling framework,

which is similar to the composite link and exploded likelihood formulation described by

Rabe-Hesketh and Skrondal (2007). Sophisticated software routines could even permit

user-defined probability distributions for f(uij|ξi).

3. Parameter estimation

ML estimation for the generalized SEM is discussed in this section. After presenting

the likelihood function, the model is slightly reparameterized to distinguish between latent

variables that only directly affect continuous, normally distributed endogenous variables

and latent variables that affect one or more nonnormal endogenous variables. It is then

demonstrated that the former of these latent variables can be analytically integrated out of
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the likelihood function to reduce the computational complexity of the model. Finally,

approximating the intractable integral within the likelihood function and first

order-derivatives of the log-likelihood function using Gaussian quadrature is detailed.

3.1. Likelihood function

Letting ϑ denote all of the free and non-redundant model parameters, the likelihood

function for individual i follows as:

Li(ϑ) =

∫
f(ui|ηi)f(yi|ηi)f(ηi)dηi, (6)

where

yi|ηi ∼ N (νy + Λyηi + Kyxi,Θ), (7)

ηi ∼ N (µη,Ση), (8)

µη = (I− B)−1(α+ Γxi), and Ση = (I− B)−1Ψ(I− B)−1
′
. (9)

As stated previously, there is much flexibility in the specification of

f(ui|ηi) =
∏

j fj(uij|ηi).

If there are no ui variables within the model (i.e., k = 0), then the model reduces to a

typical SEM and the m-dimensional integral in Equation 6 can be computed in

closed-form. But, due to the nonlinearity of ηi within f(ui|ηi), the likelihood function

cannot generally be computed in closed-form when k > 0. Instead, for likelihood inference

the integral must be numerically approximated. Adaptive Gauss-Hermite quadrature is

often viewed as the gold standard for numerically approximating such integrals (Pinheiro &

Bates, 1995; Rabe-Hesketh et al., 2002), but the computational burden of quadrature based

numerical integration increases exponentially as a function of the dimension of numerical

integration. In Equation 6, the dimension of integration is equal to the number of latent

variables, m. Thus, numerically approximating Equation 6 directly via quadrature based

methods in not practical for models involving many latent variables.

However, when some of the latent variables do not influence the categorical variables

ui directly, the dimension of numerical integration can be reduced. That is, only latent

variables that have direct effects on elements of ui need to be numerically integrated.

These latent variables can be determined using a simple reparameterization of the model.
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3.2. Reformulating the model

Direct effects of the latent variables ηi on the observed variables ui are modeled via Λu

in Equation 3. Suppose ηi can be partitioned into two subsets, η1i (m1 × 1) and η2i

(m2 × 1), such that only elements of η1i influence one or more elements of uj directly. It is

assumed that the elements of ηi are ordered such that the combination of Equations 1 and

3 can be reformulated as:(
ξi
yi

)
=

(
νu
νy

)
+

(
Λu1 0
Λy1 Λy2

)(
η1i
η2i

)
+

(
Ku

Ky

)
xi +

(
0
εi

)
. (10)

It is now explicit that ξi (and, therefore, ui) is not modeled as a direct function of η2i. In

contrast, η1i may influence both sets of observed variables ui and yi, via the matrices Λu1

(r ×m1) and Λy1 (p×m1), respectively. When the model can be written in this form, such

that m2 > 0, the dimension of numerical integration required for likelihood estimation can

be reduced from m to m1.

Specifically, the likelihood function defined by Equation 6 can be equivalently written

as

Li(ϑ) =

∫ ∫
f(ui|η1i,η2i)f(yi|η1i,η2i)f(η2i|η1i)f(η1i)dη2idη1i, (11)

where, as before, the dimension of integration is equal to m = m1 +m2. However, by

formulating the model as that defined by Equation 10, it is clear that the observed variables

ui are independent from η2i, conditional on η1i. Therefore, the dependence on η2i within

f(ui|η1i,η2i) can be removed, allowing the function to be pulled out of the interior integral:

Li(ϑ) =

∫
f(ui|η1i)

[ ∫
f(yi|η1i,η2i)f(η2i|η1i)dη2i

]
︸ ︷︷ ︸

f(yi|η1i)

f(η1i)dη1i. (12)

The utility of this rearrangement is that the interior integral, corresponding to the

distribution of yi conditional on η1i, but marginalized over η2i, can be computed in

closed-form. Therefore, the latent variables η2i can be analytically integrated, reducing the

dimension of numerical integration required. This is equivalent to the method proposed by

du Toit and Cudeck (2009) in the context of nonlinear mixed effects models.
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3.3. Analytically integrating η2i out of the likelihood

Let Π = (I− B)−1, and

S1 =
(
Im1 0m1×m2

)
and S2 =

(
0m2×m1 Im2

)
(13)

denote zero-one selection matrices such that

Π1 = S1Π and Π2 = S2Π (14)

correspond to the first m1 and last m2 rows of Π, respectively. The vector ηi is

multivariate normal: (
η1i
η2i

)
∼ N

[(
µ1

µ2

)
,

(
Σ1 Σ12

Σ21 Σ2

)]
, (15)

where

µ1 = Π1(α+ Γxi), µ2 = Π2(α+ Γxi), (16)

Σ1 = Π1ΨΠ′1, Σ2 = Π2ΨΠ′2, and Σ21 = Σ′12 = Π2ΨΠ′1. (17)

Following, the distribution of η2i conditional on η1i = a is also multivariate normal:

η2i|η1i = a ∼ N (µ2•1,Σ2•1), (18)

where

µ2•1 = µ2 + Σ21Σ
−1
1 (a− µ1), (19)

and

Σ2•1 = Σ2 − Σ21Σ
−1
1 Σ12. (20)

Finally, the distribution of yi conditional on η1i = a follows as

yi|η1i = a ∼ N (µy•1,Σy•1), (21)

where

µy•1 = νy + Λy1a + Λy2µ2•1 + Kyxi, (22)

and

Σy•1 = Λy2Σ2•1Λ
′
y2 + Θ. (23)
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Consequently, the likelihood function defined by Equation 12 can be reformulated as

Li(ϑ) =

∫
f(ui|η1i)f(yi|η1i)f(η1i)dη1i, (24)

where

f(yi|η1i = a) = (2π)−p/2|Σy•1|−1/2exp
{
− 1

2
(yi − µy•1)

′Σ−1y•1(yi − µy•1)
}
, (25)

and

f(ui|η1i = a) =
∏
j

fj(uij|νu + Λu1a + Kuxi). (26)

It is clear that the function has now been reduced to an m1-dimensional integral.

3.4. Numerically approximating the likelihood

Despite the dimension of integration being reduced, the reformulated likelihood

function is still intractable and so it must be numerically approximated. Numerous

methods have been proposed for approximating the integral. In this section, adaptive and

nonadaptive Gaussian quadrature methods are discussed.

3.4.1. Nonadaptive quadrature

Using Q nodes per dimension, the likelihood contribution for individual i can be

approximated using Gaussian quadrature as

Li(ϑ) =

Q∑
q1=1

· · ·
Q∑

qm1=1

f(ui|η1i = tq)f(yi|η1i = tq)wq1 . . . wqm1
. (27)

The quadrature nodes tq = (tq1 , . . . , tqm1
)′ and weights wq = (wq1 , . . . , wqm1

)′ are selected

such that

tq = µ1 +
√

2Σ
1/2
1 t∗q, and wq =

1√
π
w∗q ,

where t∗q and w∗q are standard Gaussian quadrature nodes and weights, respectively, and

Σ
1/2
1 is the Cholesky decomposition of Σ1.
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3.4.2. Adaptive quadrature

The approximation method requires the conditional distribution to be evaluated a total

of Qm1 times per optimization iteration, where m1 is fixed dependent on the model and Q

is chosen by the user. Using a smaller Q results in quicker computation (at least within the

given iteration), but may be too poor of an approximation to accurately estimate the

model parameters or ensure that the estimation algorithm converges. In addition, for a

fixed number of nodes, the approximation tends to perform more poorly when the the

latent variables η1i have substantial variability. This results from the quadrature nodes

missing important features of the distribution for many individuals (see, e.g., Rabe-Hesketh

et al., 2005, for a visual). To circumvent this problem, adaptive quadrature can be used,

where the nodes are centered and scaled uniquely for each individual.

One approach for centering and scaling the nodes is to use the posterior means and

variances. This approach has been implemented by Rabe-Hesketh et al. (2002) with

gllamm and is the default method used by Stata’s gsem function. However, obtaining the

posterior means and variances also requires numerical integration and so an iterative

process is needed. Further, Rabe-Hesketh et al. (2002) note that typically at least five

quadrature nodes are required for the method to work properly.

Alternatively, the nodes may be centered around the joint posterior mode of the latent

variables, where the scaling of the nodes is determined by the curvature at the mode

(Q. Liu & Pierce, 1994; Pinheiro & Bates, 1995). The conditional posterior mode can be

found by maximizing the (unnormalized) posterior density of η1i,

h∗(η1i|ui,yi) = f(ui|η1i)f(yi|η1i)f(η1i), (28)

with respect to η1i. Although the maximization also requires an iterative procedure, the

computational complexity of the maximization does not depend on the number of

quadrature points used as numerical integration is not required within this step. This

method can also be used with a single node, resulting in the Laplace approximation

(Q. Liu & Pierce, 1994; Pinheiro & Bates, 1995). The maximization can be performed

using a Newton-Raphson routine, which requires the first- and second-order derivatives.

These derivatives are provided in Appendix A.
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Letting

η̂1i = arg max
η1i

log{h∗(η1i|ui,yi)}, (29)

denote the conditional posterior mode of η1i and

Σ̂i =

[
− ∂2log{h∗(η1i|ui,yi)}

∂η1iη′1i

∣∣∣
η1i=η̂1i

]−1
(30)

denote the curvature of the posterior distribution about the mode, a new set of quadrature

nodes adapted to individual i can be constructed as

t̃q = η̂1i +
√

2Σ̂
1/2
i t∗q, (31)

where Σ̂
1/2
i is the Cholesky decomposition of Σ̂i. The likelihood contribution for individual

i can then be expressed as:

Li(ϑ|ui,yi) =

∫
f(ui,yi|η1i)f(η1i|µ1,Σ1)

f(η1i|η̂1i, Σ̂i)
f(η1i|η̂1i, Σ̂i)dη1i,

which is approximated using the individual-centered and scaled nodes as:

Li(ϑ|ui,yi) =

Q∑
q1=1

· · ·
Q∑

qm1=1

f(ui,yi|η1i = t̃q)f(t̃q|µ1,Σ1)

f(t̃q|η̂1i, Σ̂i)
wq1 . . . wqm1

=(2π)m1/2|Σ̂i|1/2
Q∑

q1=1

· · ·
Q∑

qm1=1

f(ui,yi|η1i = t̃q)f(t̃q|µ1,Σ1)

× exp(t∗
′

q t
∗
q)wq1 . . . wqm1

.

For fixed Q, adaptive quadrature is more computationally complex than nonadaptive

quadrature because the posterior mode and curvature must be determined for each

individual. However, by scaling the nodes adaptively, using adaptive quadrature can

typically result in an equally precise approximation as nonadaptive quadrature using much

fewer nodes. Thus, estimation requiring multidimensional numerical integration can

typically be performed faster using adaptive quadrature relative to nonadaptive quadrature.

3.5. Score Function

The log of the likelihood function can be maximized using any general purpose

optimizer. Most optimizers require the first-order partial derivatives of the function being
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maximized with respect to the parameters (i.e., the gradient vector). When the function

being maximized is the log-likelihood function, the gradient vector is commonly referred to

as the score function. Although the score function can be numerically approximated, this is

often too time consuming given the large number of estimated parameters. Thus, efficient

computation of the analytic derivatives is highly advantageous. It turns out that these

derivatives can be determined by employing a relation commonly relied upon within the

EM algorithm.

Let ci = (yi,ui,η1i) denote the complete data and

LCi(ϑ) = f(yi|η1i)f(ui|η1i)f(η1i), (32)

denote the complete data likelihood for individual i. Note that in this formulation η2i has

already been marginalized out of the likelihood function and so η2i is not included within

the complete data. Thus, LCi(ϑ) could be more aptly termed the partially complete data

likelihood, but the term complete data likelihood will continue to be used here.

The partial derivatives of the complete data log-likelihood, lCi(ϑ) = log{LCi(ϑ)}, with

respect to ϑ can be denoted as

SCi(ϑ) =
∂

∂ϑ
lCi(ϑ) =

∂

∂ϑ
[log{f(yi|η1i)}+ log{f(ui|η1i)}+ log{f(η1i)}]. (33)

The complete data score function SCi(ϑ) has a number of interesting properties that result

in (relatively) straightforward computation. First, because f(yi|η1i) and f(η1i) do not

depend on the distribution of ui, neither do the derivatives of the log of each of these

components. Therefore, only the derivatives of log{f(ui|η1i)} must be adapted depending

on the specific model for ui. Second, f(ui|η1i) only depends on the parameters νu, Λu1,

and Ku. Thus, the derivatives of the complete data log-likelihood with respect to all other

parameters remain unchanged with different specification of the distribution of ui. Finally,

since the uij are independent of one another conditional on η1i, the derivatives of the log of

f(uij|η1i) are simply the sum of the derivatives of the log of fj(uij|η1i) across j. These

derivatives are already well documented for a variety of common models, such as

generalized linear models and their extensions (e.g., ZIP models, etc.). The derivatives of

the complete data log-likelihood with respect to all of the model parameters are provided

in Appendix B.
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The observed data score function for individual i, Si(ϑ), can then be computed by

recognizing that the the observed data score function is equal to the expectation of the

complete data score function over the posterior distribution of the latent variables given

the observed variables (Cai, 2010; Bianconcini et al., 2014):

Si(ϑ) =

∫
SCi(ϑ)h(η1i|yi,ui)dη1i, (34)

where h(η1i|yi,ui) is the posterior distribution of η1i,

h(η1i|yi,ui) = h∗(η1i|yi,ui)/f(yi,ui). This equality is sometimes referred to as Fisher’s

Identity (Fisher, 1925; Cai, 2010). As with the likelihood function, the observed data score

function does not have a closed form solution, but it can be approximated using adaptive

quadrature as:

Si(ϑ) ≈
∑Q

q1=1 · · ·
∑Q

qm1=1 SCi(ϑ)f(ui,yi|η1i = t̃q)f(t̃q|µ1,Σ1)exp(t∗
′
q t
∗
q)wq1 . . . wqm1∑Q

q1=1 · · ·
∑Q

qm1=1 f(ui,yi|η1i = t̃q)f(t̃q|µ1,Σ1)exp(t∗′q t
∗
q)wq1 . . . wqm1

, (35)

where the complete data score function SCi(ϑ) is evaluated at η1i = t̃q. The score function

for the entire sample is then S(ϑ) =
∑

i Si(ϑ).

4. Example

In this section, the applicability of the recently detailed method for ML estimation is

demonstrated by fitting two example models inspired by the study conducted by Collins,

Witkiewitz, and Larimer (2011), who were interested in how subjective drinking norms,

attitudes towards alcohol, drinking behavior self efficacy, and drinking behavior control

relate to drinking intentions which, in turn, relate to changes in drinking behavior over

time. The authors measured the drinking norms, attitudes, self efficacy, control, and

intentions of 837 college students using four, four, two, three, and two items, respectively.

The number of heavy drinking days within the past month was also measured at this time,

and each of the following three months for a total of four measurement occasions. The

number of heavy drinking days was modeled using the Poisson distribution and the

remaining observed variables were assumed to be normally distributed, or at least

approximately so. Simulated data, constructed using the descriptive statistics and
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parameter estimates provided by Collins et al. (2011), are used here so that the data can

be shared without restriction.

Two example models are fit to this data. The first model that is fit to the data here is

comparable to that used by Collins et al. (2011). This model demonstrates types of models

that are common in behavioral science research and how the methods presented within this

paper can aid in efficiently estimating the parameters of such models. Next, the data will

be used to fit another model corresponding to a Poisson regression with latent predictors

and overdispersion. This example demonstrates how the model of interest can sometimes

be reparameterized to take advantage of the numerical integration dimension reduction

technique described here.

For the current implementation, the likelihood function and first-order derivatives were

coded within C++ and maximized using the nlminb algorithm within the optimx R

package (Nash, 2014) via Rcpp (Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel &

Sanderson, 2014). All of the code necessary to replicate the analyses is provided at

https://osf.io/w8u2q/. The parameter estimates are also compared to those obtained using

Mplus and, when possible, the gsem function in Stata, which relies on many of the same

underlying computational methods as gllamm with the addition of analytic derivatives.

4.1. Full structural model with latent growth factors as outcomes

4.1.1. Model

This first example uses a model that is comparable to that used by Collins et al.

(2011)1, in which subjective drinking norms, attitudes, control, self efficacy, and intentions

are all modeled using latent factors with their respective item indicators. The intentions

latent factor is then regressed on the other four (norms, attitudes, control, self efficacy),

with estimated covariances among the four exogenous latent variables. The number of

1There are two minor differences between the model implemented here and the model used by Collins

et al. (2011). First, Collins et al. (2011) modeled subjective drinking norms using a hierarchical factor

model with two sub factors, corresponding to descriptive and injunctive norms, each measured by two items.

Second, Collins et al. (2011) used a quadratic growth model for the number of drinking episodes, whereas a

linear growth model is used here.
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heavy drinking episodes at the 4 time points, each assumed to be (conditionally)

distributed as Poisson random variables with a log link function, are modeled using a

latent growth curve, where the latent growth factors are regressed on the latent drinking

intentions factor. A path diagram corresponding to the model is displayed in Figure 1.

[Figure 1 about here.]

The full model specification is:

ξ1i
ξ2i
ξ3i
ξ4i

Norm1i

Norm2i

Norm3i

Norm4i

Att1i
Att2i
Att3i
Att4i

Cont1i
Cont2i
Cont3i
SE1i

SE2i

Int1i
Int2i



=



0
0
0
0
ν5
ν6
ν7
ν8
ν9
ν10
ν11
ν12
ν13
ν14
ν15
ν16
ν17
ν18
ν19



+



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 0 0 0 0 0
1 3 0 0 0 0 0
0 0 1 0 0 0 0
0 0 λ63 0 0 0 0
0 0 λ73 0 0 0 0
0 0 λ83 0 0 0 0
0 0 0 1 0 0 0
0 0 0 λ10,4 0 0 0
0 0 0 λ11,4 0 0 0
0 0 0 λ12,4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 λ14,5 0 0
0 0 0 0 λ15,5 0 0
0 0 0 0 0 1 0
0 0 0 0 0 λ17,6 0
0 0 0 0 0 0 1
0 0 0 0 0 0 λ19,7





Intercepti
Slopei
Normi

Atti
Conti
SEi

Intenti


+



0
0
0
0
ε5i
ε6i
ε7i
ε8i
ε9i
ε10,i
ε11,i
ε12,i
ε13,i
ε14,i
ε15,i
ε16,i
ε17,i
ε18,i
ε19,i



,

(36)

HEDji ∼ Poisson(exp{ξji}), j = 1, 2, 3, 4, (37)

and

Intercepti
Slopei
Normi

Atti
Conti
SEi

Intenti


=



α1

α2

0
0
0
0
0


+



0 0 0 0 0 0 β17
0 0 0 0 0 0 β27
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 β73 β74 β75 β76 0





Intercepti
Slopei
Normi

Atti
Conti
SEi

Intenti


+



ζ1i
ζ2i
ζ3i
ζ4i
ζ5i
ζ6i
ζ7i


, (38)
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where Θ = diag(θ55, θ66, ..., θ19,19) and

Ψ =



ψ11 ψ12 0 0 0 0 0
ψ21 ψ22 0 0 0 0 0
0 0 ψ33 ψ34 ψ35 ψ36 0
0 0 ψ43 ψ44 ψ45 ψ46 0
0 0 ψ53 ψ54 ψ65 ψ56 0
0 0 ψ63 ψ64 ψ75 ψ66 0
0 0 0 0 0 0 ψ77


. (39)

In total, the model has 62 freely estimated parameters and 7 latent variables. Thus,

without using the numerical integration dimension reduction technique presented here, ML

parameter estimation would require 7 dimensions of numerical integration. However, as

shown in Equation 36, the only latent variables that directly influence nonnormal observed

variables (i.e., the heavy episodic drinking variables) are the latent intercept and slope

growth factors. Thus, only two dimensions of numerical integration are needed when the

dimension reduction technique is employed, as once the latent growth factors are

conditioned on the other latent factors can be analytically integrated out of the likelihood

function.

4.1.2. Parameter Estimates

The model was fit to the data using the estimation routine described in this paper and

Mplus. In both implementations, adaptive quadrature was used with 10 nodes per

dimensions, resulting in a total of 100 integration nodes. The gsem function in Stata was

also used to try to estimate the model parameters. Due to the high dimension of numerical

integration required, only three nodes per dimension could be used, resulting in a total of

37 = 2187 total nodes. Unfortunately, the model failed to converge after several days of

computation and it would be too computationally intensive to further increase the number

of nodes used per dimension of numerical integration (e.g., using 4 nodes per dimension

would require 47 = 16384 total nodes).

The parameter estimates and standard errors for most of the estimates obtained using

Mplus and the method introduced here are displayed in Table 1. To ensure the covariance

matrices during the R/C++ estimation were positive definite, the matrices were

parameterized using variances and correlations with appropriate bound constraints. The
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Mplus estimates of correlations were obtained via the option for standardized estimates.

Estimates of item intercepts and residual variances are omitted from Table 1 for

space-saving purposes.

As is clear, the parameter estimates and final log-likelihood from the R/C++

implementation are nearly identical to those obtained using Mplus. These estimates, which

again are based on data simulated to be comparable to that used by Collins et al. (2011),

indicate that drinking attitudes and subjective drinking norms are positively associated

with drinking intentions (β̂74 = 0.44 and β̂73 = 0.11, respectively), whereas drinking

self-efficacy and control are negatively associated with drinking intentions (though the

effect of control is not statistically significant; β̂76 = −0.17 and β̂75 = −0.07, respectively).

Further, those with higher drinking intentions tend to engage in more heavy episodic

drinking events at baseline (β̂17 = 0.15). Individuals with average intentions are estimated

to decrease in their heavy episodic drinking behaviors over time (α̂2 = −0.05), but this

decrease is less pronounced for those with higher drinking intentions (β̂27 = 0.04).

However, even after accounting for drinking intentions, there are significant individual

differences in both heavy episodic drinking behaviors at baseline (ψ̂11 = 0.04) and changes

in such behavior over time (ψ̂22 = 0.02). Readers are encouraged to consult Collins et al.

(2011) for the actual substantive conclusions of the analysis.

[Table 1 about here.]

In addition to the estimates being comparable across software implementations,

refitting the models using more nodes per dimension resulted in negligible changes to these

estimates, suggesting that the 10 nodes per dimension used are sufficient for accurately

approximating the likelihood function for this model. Although estimation using Mplus

was the fastest program for obtaining estimates (7 seconds), the R/C++ implementation

was still fast (9.8 minutes) relative to Stata’s gsem function, which took several days before

a nonconvergence error was returned.

Differences in estimation time between the Mplus and R/C++ implementation are

likely due to a variety of minor differences in computational implementation, including

code optimization within Mplus, the optimization routine used (e.g., EM algorithm,
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nlminb, etc.), and the programming language. For example, Mplus is written in Fortran,

which is a very fast compiled language. Although the likelihood function and derivatives

for the custom implementation were written in C++, which is also a fast compiled

language, the optimization was carried out via R, which is typically orders of magnitude

slower than both Fortran and C++. Thus, even if the underlying computations were

exactly equivalent between the Mplus and R/C++ implementations, it is expected that

Mplus’ Fortran implementation would be faster. Further, Mplus uses analytic second-order

derivatives, which are useful for both optimization and computation of standard errors.

The R/C++ computation of standard errors relies on numerically differentiating the

analytic gradient, and the computation of the standard errors was responsible for a large

portion of the estimation time for the R/C++ implementation.

Although between-program differences in estimation time are interesting, the primary

goal here is to determine the impact of reducing the dimension of numerical integration.

Therefore, the models were re-estimated within both Mplus and R/C++ with

parameterizations that resulted in all seven latent variables being numerically integrated.

This allows for a comparison of estimation times within a given program, which can be

used to assess the effect of the dimension of numerical integration after controlling for all

other factors that result in between-program differences.

In Mplus, the model was refit using six adaptive quadrature nodes per each of the

seven dimension, as using fewer nodes resulted in nonconvergence issues. Although the

parameter estimates and final log likelihood (displayed in the final column in Table 1) are

generally comparable to those obtained using the dimension reduction technique, the

estimation procedure took over 38 hours to complete, which is in stark contrast to the 7

seconds required when only two dimensions were numerically integrated. Within the

R/C++ implementation, convergence could be obtained using four adaptive quadrature

nodes per dimension, which took over 5 days to complete. Although most of the parameter

estimates are comparable to when the model was fit using two dimensions of numerical

integration, there are some discrepancies for the estimated variances and correlation for the

latent growth factors. There were also issues with the standard errors for these parameters,

which likely stemmed from there being too few quadrature nodes to accurately
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approximate the derivatives. Increasing the number of quadrature nodes could mitigate

this issue, though this would substantially increase the computational complexity.

Together, these results demonstrate the dramatic effect that the dimension reduction

technique can have on estimation time and, in some scenarios, the parameter estimates.

4.2. Poisson regression with latent predictors and overdispersion

In this example, it is demonstrated how a model in which several latent variables

directly related to a nonnormal and/or categorical outcome variable can be reparameterized

to take advantage of the dimension reduction technique presented here. This example uses

only a subset of the latent variables from the full model to allow estimates obtained using

Stata’s gsem function, which does not have the capability of reducing the dimension of

numerical integration, to be compared to the R/C++ and Mplus implementations.

4.2.1. Model

Suppose there is interest on the effect of the exogenous latent factors from the

previous analysis on the number of heavy drinking episodes at the final measurement (i.e.,

HED4i). The equation for the linear function ξi of the count outcome in scalar form is

ξi = ν1 + λ11Normi + λ12Atti + λ13Conti + λ14SEi. (40)

Count data often has a larger variance than mean, a scenario known as overdispersion.

Although it is common to use the negative binomial distribution rather than the Poisson

distribution when overdispersion is present, an alternative within latent variable modeling

frameworks is to include a random effect/latent factor in the model to account for the

overdispersion. A path diagram corresponding to the model with an additional latent

factor for overdispersion is presented in Figure 2. The model for ξi is

ξi = ν1 + Dispi + λ21Normi + λ13Atti + λ14Conti + λ15SEi, (41)

where the loading/coefficient for Dispi, the dispersion factor, is constrained to 1 with a

freely estimated variance.

[Figure 2 about here.]
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As parameterized, these two models would required four and five dimensions of

numerical integration, respectively, as each of the latent factors have direct effects on the

count outcome. However, an equivalent model can be specified using a parameterization in

which the latent norms, attitude, control, and self efficacy factors directly influence the

overdispersion factor, rather than the observed count outcome:

ξi = ν1 + Dispi, where Dispi = β12Normi + β13Atti + β14Conti + β15SEi + ζ1i (42)

ξi = ν1 + (β12Normi + β13Atti + β14Conti + β15SEi + ζ1i). (43)

The residual variance of the overdispersion factor in the new parameterization

corresponds to the variance of the overdispsersion factor in the original model. With the

new parameterization it is clear that only one dimension of numerical integration is

required to estimate the parameters of the model. Further, adding additional latent

predictors (with conditionally normal indicator variables) of the count outcome via the

overdispsersion factor within the new parameterization has no affect on the dimension of

numerical integration required. This is because the distribution of the count outcome does

not depend on the full multivariate distribution of the latent factors, but only the specific

linear function of the latent factors that makes up the Dispi variable in Equation 42.

In general, a “phantom” factor, such as Dispi in Equation 42, may be used for each

individual nonnormal response variable in a given model, resulting in the dimension of

numerical integration required always being less than or equal to the total number of

nonnormal response variables. If a phantom factor is used for a nonnormal response and

the residual variance of the factor is freely estimated, the variance corresponds to an

overdispersion parameter. For nonnormal response variables where overdispersion is not of

interest (including nonnormal response variables where an overdispersion parameter would

not be identified), the residual variance of the phantom factor could be constrained to 0 (or

a small number such as .001) to still take advantage of the reduced dimension of numerical

integration resulting from use of the phantom variable.

Depending on the specific model, it may or may not be advantageous to use the

phantom variable approach. In the previous latent growth model, it would not be advised

since this would require four separate phantom variables that must be numerically
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integrated, whereas in the original model parameterization there were only two latent

factors that influenced nonnormal variables. For other models, it may be beneficial to use a

phantom factor for only a subset of the nonnormal responses. Appendix C describes a

more thorough account of model reparmeterization and presents a set of steps for

determining the reparameterization that minimizes the dimensions of numerical integration

needed for any given model. These steps may be conducted algorithmically within the

estimation routine, which would take the burden of reparameterization off of the user.

4.2.2. Parameter Estimates

The model with overdispersion was fit using the R/C++ implementation, Mplus, and

the gsem function in Stata. For the R/C++ and Mplus implementations, the model was fit

using the reparameterized model that only requires one dimension of numerical integration.

Ten nodes for this single dimension were deemed to be sufficient for accurate parameter

estimation. Within gsem, the parameterization does not change the dimension of numerical

integration required for estimation, as both methods require five dimensions. For each

dimension, five nodes were used resulting in a total of 55 = 3125 quadrature nodes.

The parameter estimates obtained using the three implementations are displayed in

Table 2. All three methods produced near equivalent results that only differed in the

hundredths decimal place for a few estimates. However, there was a vast difference in the

time required for estimation. Both the R/C++ and Mplus implementations took under a

minute. The gsem implementation, on the other hand, took over 3 hours and 45 minutes to

complete. Thus, the reduction in the dimension of integration that results from the

methods introduced within this paper is instrumental for computationally efficient

estimation. Further, because the R/C++ and Mplus implementations only required one

dimension of numerical integration, minimal time was required to re-estimate the model

using more nodes to ensure that the quadrature-based approximation to the likelihood

function is accurate. It would not be practical to try to reestimate the model using gsem

with an additional node per dimension, as using 6 nodes per dimension would required

65 = 7765 total nodes, which is more than double what was used initially.

[Table 2 about here.]
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To further explore the time required for parameter estimation as a function of the

dimension of numerical integration, the model was refit within the R/C++ and Mplus

implementations using model parameterizations that required various dimensions of

numerical integration ranging from one to five dimensions. Five nodes per dimension were

used so that the estimation times, which are displayed in Table 3, can be compared to the

gsem estimation method. As with the previous example, Mplus is quite a bit faster than

the R/C++ implementations. When five dimensions of numerical integration was required,

the Mplus implementation did not converge, whereas the R/C++ implementation was

about an hour faster than the gsem implementation. Of primary importance, it is also

clear that within both R/C++ and Mplus, estimation time increases dramatically as a

function of the dimension of numerical integration. Thus, holding all other implementation

variables constant (e.g., optimization algorithm, programming language, etc.), these results

suggest that it can be highly beneficial to adopt the dimension reduction technique

described throughout this paper.

[Table 3 about here.]

5. Conclusion

A flexible generalized SEM that allows for a combination of response variables from

various distributions was introduced and an efficient ML estimation routine was detailed.

A major advantage of the routine is the potential for reducing the dimension of numerical

integration required for certain model specifications. The first-order derivatives of the

log-likelihood function were also provided to improve upon the speed of parameter

estimation. The method was demonstrated using two example analyses of alcohol use data

similar in structure to that used by Collins et al. (2011).

As demonstrated by the example analyses, the dimension reduction technique can

have profound effects on the time required for parameter estimation. These findings are

consistent with the orignal assessment of the dimension reduction technique conducted by

du Toit and Cudeck (2009) for nonlinear mixed models. Although the performance of the

parameter estimates were not directly assessed here, du Toit and Cudeck (2009) also

determined that reducing the dimension of numerical integration can result in less biased
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parameter estimates, as the likelihood function may be better approximated. For multilevel

SEMs with random slopes, Rockwood (2020) also found that reducing the dimension of

numerical integration required tended to result in less biased parameter estimates, smaller

mean square errors for the estimates, and fewer nonconvergence issues. It is reasonable to

suggest that these advantages would also be applicable to the generalized SEM discussed

here.

Although the proposed method for reducing the dimension of numerical integration

required for parameter estimation vastly expands the potential range of models that can be

feasibly estimated using quadrature based methods, models with many latent variables

that directly affect nonnormal responses may still required a dimension of numerical

integration that is not practical. In some circumstances, such as in the second example

provided here, the model can be reparameterized following the rules discussed in

Appendix C to allow for a final dimension of numerical integration that is practical to

approximate using quadrature based methods. For other models with many latent

variables, using simulation based methods, such as Monte Carlo integration within the ML

framework or Markov Chain Monte Carlo (MCMC) within the Bayesian framework, may

be required to obtain parameter estimates.

It would also be worthwhile to extend the methods detailed here to some interesting

model extensions that have been implemented in gllamm (Rabe-Hesketh et al., 2004), gsem

(StataCorp, 2019b), and Mplus (L. K. Muthén & Muthén, 2017). Mixture models, which

rely upon categorical latent variables, have become increasingly popular in substance use,

delinquency, and personality research. In addition to more traditional uses of mixture

models within the SEM framework, such models can also be used for modeling nonlinear

relationships among latent variables (Bauer, 2005; Pek, Sterba, Kok, & Bauer, 2009).

The close relationship between structural equation models and multilevel modeling,

which has been detailed extensively (e.g., Bauer, 2003; Curran, 2003), has been exploited

to combine such methods within a unifying framework known as multilevel SEM. The

software programs focused on here (Mplus, gsem, gllamm) can each fit various forms of

multilevel SEMs with generalized responses. However, such models typically have several

latent variables and so estimation can be very computationally intensive. As mentioned
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previously, Rockwood (2020) demonstrated that the numerical integration dimension

reduction technique used here can also be used for estimating multilevel SEMs with

random slopes for latent covariates and normal response variables. Future research could

work to combine the methods introduced here with those presented by Rockwood (2020)

for efficient ML estimation of multilevel generalized SEMs.
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Appendix A

In this Appendix the first- and second-order derivatives of the log of the unnormalized

conditional posterior distribution of η1i,

log{h∗(η1i|ui,yi)} = log{f(ui|η1i)}+ log{f(yi|η1i)}+ log{f(η1i)}, (A1)

with respect to η1i are provided. These derivatives, which are simply the sum of the

derivatives of each of the individual components above, can be used in conjunction with

the Newton-Raphson algorithm to obtain the posterior mode and curvature of

log{h∗(η1i|ui,yi)} at the mode, which can then be used to center and scale the adaptive

quadrature nodes.

First, define the intermediary quantities

A = (Λ′y1 + Σ−11 Σ12Λ
′
y2)Σ

−1
y•1, and C = AΛ′y1, (A2)

which do not depend on η1i or the data and so only need to be computed once for all

individuals (i.e., these quantities remain constant across all i). Using these quantities, the

first- and second-order derivatives of the components of log{h∗(η1i|ui,yi)} with respect to

η1i are
∂log{f(η1i)}

∂η1i
= −Σ−11 (η1i − µ1),

∂2log{f(η1i)}
∂η1i∂η′1i

= −Σ−11 , (A3)

∂log{f(yi|η1i)}
η1i

= A(yi − µy•1),
∂2log{f(yi|η1i)}

∂η1iη′1i
= −C, (A4)

∂log{f(ui|η1i)}
∂η1i

=
∑
j

∂log{f(uij|η1i)}
∂η1i

, and
∂2log{f(ui|η1i)}

∂η1iη′1i
=
∑
j

∂2log{f(uij|η1i)}
∂η1iη′1i

.

(A5)

The final two quantities, corresponding to the first- and second-order derivatives of

log{f(ui|η1i)}, are the only ones that depend on the distributions of ui. When uij is

conditionally distributed as a Poisson random variable with mean exp(ξij), then

∂log{f(uij|η1i)}
∂η1i

= uijΛ
′
u1[j] − exp(ξij)Λ

′
u1[j], (A6)

and
∂2log{f(uij|η1i)}

∂η1iη′1i
= −exp(ξij)Λ

′
u1[j]Λu1[j], (A7)

where Λu1[j] is the jth row of Λu1.
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Appendix B

Most optimization algorithms use first-order partial derivates. As discusses in

Section 3.5, the derivatives of the (observed data) log-likelihood can be computed using

Equastion 35, which is a function of the complete data score function with η1i set to the

quadrature nodes t̃q. In this Appendix, the derivatives of the complete data log-likelihood

with respect to each of the parameter vectors/matrices is provided.

As with the derivatives provided in Appendix A, it helps to first define intermediary

quantities that remain constant across all individuals and nodes. Specifically, define:

V = Σ−11 Π1, Z = Σ−1y•1Λy2Σ2•1, W = Σ21V −Π2, T = Σ−1y•1Λy2W, D = TΨΠ′,

(A8)

E = Σ21Σ
−1
1 S1 − S2, F = Λy2EΠ, G = Σ−1y•1F, H = VΨ, M = Σ−11 S1Π, (A9)

Ψ̃ = −T′Λy2W −Π′1V, and B̃ = −F′D−Π′S′1HΠ′. (A10)

Next, define the following quantities that do depend on the data and/or quadrature nodes

(i.e., η1i = t̃q):

h = t̃q − µ1, r = α+ Γxi + Hh, ey = yi − µy•1, s = T′ey, (A11)

U = sh′Σ−11 Π1, and w = Vh′. (A12)

Using these expressions, the first-order derivatives of the complete data log-likelihood with

respect to the various parameters that do not depend on the conditional distribution of ui

follow as:

∂lCi(ϑ)

∂νy
= Σ−1y•1ey,

∂lCi(ϑ)

∂Ky

= Σ−1y•1eyx
′
i,

∂lCi(ϑ)

∂Λy1

= Σ−1y•1eyt̃
′
q, (A13)

∂lCi(ϑ)

∂Λy2

= −Z + Σ−1y•1ey(µ′2•1 − e′yZ), (A14)

∂lCi(ϑ)

∂α
= −(s−w),

∂lCi(ϑ)

∂Γ
= −(s−w)x′i, (A15)

∂lCi(ϑ)

∂B
= B̃ + (s−M′h)e′yD + (M′h−G′ey)r′Π′ (A16)

∂lCi(ϑ)

∂Θ
= Θ∗ − .5(I ◦Θ∗), and

∂lCi(ϑ)

∂Ψ
= Ψ∗ − .5(I ◦Ψ∗), (A17)
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where

Θ∗ = Σ−1y•1 − Σ−1y•1eye
′
yΣ−1y•1, and Ψ∗ = Ψ̃ + ss′ −U−U′ + ww′. (A18)

The derivatives for νu, Λu1, and Ku depend on f(ui|η1i) and so will change with

different model specifications. In general,

∂lCi(ϑ)

∂νu
=
∑
j

∂f(uij|η1i)
∂νu

,
∂lCi(ϑ)

∂Λu1

=
∑
j

∂f(uij|η1i)
∂Λu1

, and
∂lCi(ϑ)

∂Ku

=
∑
j

∂f(uij|η1i)
∂Ku

.

(A19)

When uij is conditionally distributed as a Poisson random variable with mean exp(ξij), then

∂f(uij|η1i)
∂νu[j]

= uij−exp(ξij),
∂f(uij|η1i)
∂Λu1[j]

= [uij−exp(ξij)]t̃
′
q, and

∂f(uij|η1i)
∂Ku[j]

= [uij−exp(ξij)]x
′
i,

(A20)

where νu[j], Λu1[j], and Ku[j] are the jth rows of νu, Λu1, and Ku, respectively.

Appendix C

A general method for reparameterizing any specified model to minimize the dimension

of numerical integration required is discussed in this section. Recall that, without the

dimension reduction technique described in this paper, the dimension of numerical

integration required for a generalized SEM is equal to the number of latent factors, m. In

this paper, it was demonstrated that the dimension can be reduced from m to m1, where

m1 is the number of latent factors that directly affect the nonnormal response variables ui.

These latent factors can be determined via the columns corresponding to Λu1 in

Equation 10. Specifically, all columns within Λ for which there is at least one nonzero entry

in a row corresponding to ξi would indicate the latent factors that must be numerically

integrated (i.e., η1i).

In Section 4.2.1 it was demonstrated that the number of factors with nonzero Λ entries

in the rows corresponding to ξi could be reduced by using a phantom variable for each

nonnormal response (or each component of a nonnormal response, such as the zero and

count components of a ZIP model). Using a phantom variable for each component of a

nonnormal response (i.e., each element of ξi) would result in a total dimension of

integration equal to r. Thus, the maximum number of latent factors that must be

numerically integration is min(m1, r). That is, the minimum of either the original number
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of latent factors with direct effects on nonnormal responses or the number of phantom

variables needed for each of the (components for the) nonnormal responses. In the latent

growth factors as outcomes model (Section 4.1.1) the minimum was m1 = 2 (since r = 4),

whereas in the Poisson regression with latent predictors and overdispersion model

(Section 4.2.1) the minimum was r = 1 (since m1 = 5).

For other models, using a phantom variable for some, but not all, components of

nonnormal responses may result in a dimension of integration fewer than both m1 and r.

For example, consider if the indicators for the Normi factor in the latent regression model

with overdispersion displayed in Figure 2 were nonnormal. The original parameterization

(top of Figure 2) would require five dimensions of numerical integration, corresponding to

each of the latent factors (m1 = 5). If a phantom factor was used for all nonnormal

response variables (i.e., the four Normi indicators and HED4i), the model would still

require five dimensions (r = 5). If, on the other hand, a phantom factor was only used for

HED4i (bottom of Figure 2), then the model would only require two dimensions of

numerical integration: one for the Normi factor, as it has direct effects on its nonnormal

indicator variables, and one for the Dispi factor, which acts as a phantom factor for HED4i.

Using software such as Mplus, which uses the dimension reduction technique based on m1

but does not automatically reparameterize the model using phantom variables, the user

specifying the model should determine which parameterization would result in the fewest

latent variables directly influencing nonnormal responses, so that the dimension of

numerical integration required is minimized.

Although determining the proper reparameterization required to minimize the

dimension of numerical integration required may seem complex, it is actually possible to

determine the correct reparameterization using a basic set of steps:

1. If the original parameterization of a nonnormal response variable already has a

single-indicator latent factor (e.g., a dispersion factor), all direct effects of other latent

factors on the nonnormal factor should be reparameterized as direct effects on the

single-indicator latent factor, which serves as a phantom variable.

2. After any reparameterizations resulting from (1) above, define Λ∗u1 to be a zero-one
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matrix where an element is zero if the corresponding element in Λu1 is also zero and one

otherwise (i.e., the element in Λu1 is either a free parameter or a fixed non-zero

parameter).

3. Determine each unique row pattern within Λ∗u1.

4. For each unique row pattern within Λ∗u1:

(a) Compute the number of nonnormal components (i.e., elements of ξi) that have the

given row pattern (and denote as r∗).

(b) Compute the number of latent factors with non-zero effects within the pattern (and

denote as m∗).

5. The latent factors within all patterns in which the number of latent factors is less than

or equal to the number of nonnormal components (i.e., m∗ ≤ r∗) will be numerically

integrated.

6. For the remaining patterns, reduce the number of factors to those not included in the

list of factors numerically integrated from (5) above (and denote as m∗∗).

7. For the remaining patterns from (6), if the number of nonnormal components is less

than the (reduced) number of latent factors (i.e., r∗ < m∗∗), these nonnormal

components should be parameterized using a phantom variable.

To demonstrate the procedure, consider the latent growth factors as outcomes model

(Figure 1). Suppose that N1i to N4i were actually nonnormal responses and N4 cross-loaded

onto The Normi, Atti and Conti latent factors. Since there are no single-indicator factors,

Step One can be skipped. Moving to Step Two,

Λu1 =



1 0 0 0 0
1 1 0 0 0
1 2 0 0 0
1 3 0 0 0
0 0 1 0 0
0 0 λ63 0 0
0 0 λ73 0 0
0 0 λ83 λ84 λ85


, and so Λ∗u1 =



1 0 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 1 1


. (A21)

Following Step 3, the four unique row patterns within Λ∗u1 are determined and displayed in

the first five columns of Table 4. The column labeled r∗ contains the number of elements of

ξi (i.e., the number of rows within Λ∗u1) that is represented by each pattern, and the
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column labeled m∗ contains the number of latent factors with non-zero elements within the

specific row pattern (i.e., Step 4). The second and third rows corresponds to patterns with

fewer latent factors than nonnormal components (i.e., m∗ < r∗) and so the latent factors

with non-zero effects within these patterns will be numerically integrated (Step Five).

These include the Intercepti and Slopei factors for the second pattern, and the Normi

factor for the third pattern. The non-zero elements corresponding to these factors are

presented in bold within the table.

[Table 4 about here.]

Next, following Step Six, the remaining number of factors (i.e., non-bold elements) are

calculated for each of the remaining patterns (patterns one and four). Since Intercepti and

Normi will already be numerically integrated based on Step Five, the remaining number of

factors for patterns one and four are zero and two, respectively. Finally, following Step

Seven, it is determined that the single nonnormal component within pattern one should

not be represented using a phantom factor (since r∗ > m∗∗), whereas the single nonnormal

component within pattern four should be reparameterized with a phantom factor (since

r∗ < m∗∗). This nonnormal component corresponds to N4i, which is the indicator variable

that loads onto the Normi, Atti, and Conti latent factors. The total dimension of

numerical integration required for parameter estimation is equal to four, which is the sum

of the bold numbers in the final three columns of Table 4. The factors that must be

numerically integrated are Intercepti, Slopei, Normi, and the phantom factor for N4i.

A major advantage of this approach is that it can be implemented within the

estimation routine, rather than requiring the user to conduct the reparameterization by

hand before model specification. That is, the original parameterization could be used as

input from the user, and the estimation routine could first algorithmically reparameterize

the model following the steps outlined above and then estimate the parameters from the

reparameterized model, resulting in the dimension of numerical integration required being

minimized.
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Figure 1.
A path diagram corresponding to the full structural model with latent growth factors as outcomes. To reduce
clutter, item and factor intercepts and means, as well as the covariances among the four exogenous factors,
have been omitted.



FIGURES 38

Poisson

HED4i

log link

Atti ContiNormi SEi

Dispi

A3iA2iA1iN4iN3iN2iN1i A4i C1i C2i C3i S1i S2i

1
λ14,5

1 λ11,4
λ12,41 λ73

λ83
λ931 λ32

λ42 λ52

1

λ12 λ13 λ14
λ15

Poisson

HED4i

log link

Atti ContiNormi SEi

Dispi

A3iA2iA1iN4iN3iN2iN1i A4i C1i C2i C3i S1i S2i

1
λ14,5

1 λ11,4
λ12,41 λ73

λ83
λ931 λ32

λ42 λ52

1

β12 β13 β14 β15

Figure 2.
Path diagrams corresponding to Poisson regression model with latent predictors and overdispersion. Al-
though both models are equivalent, the top parameterization requires five dimensions of numerical integra-
tion, whereas the bottom parameterization requires only one.
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Dimension = 2 Dimension = 7
Effect Parameter New (SE) Mplus (SE) New (SE) Mplus (SE)

Norm2 Loading λ63 1.010 (0.013) 1.010 (0.013) 1.010 (0.013) 1.010 (0.013)
Norm3 Loading λ73 0.789 (0.010) 0.789 (0.010) 0.789 (0.010) 0.789 (0.010)
Norm4 Loading λ83 0.795 (0.011) 0.795 (0.011) 0.795 (0.011) 0.795 (0.011)

Att2 Loading λ10,4 0.995 (0.022) 0.995 (0.022) 0.999 (0.022) 0.996 (0.022)
Att3 Loading λ11,4 0.660 (0.021) 0.660 (0.021) 0.662 (0.021) 0.660 (0.021)
Att4 Loading λ12,4 0.737 (0.021) 0.737 (0.021) 0.739 (0.021) 0.738 (0.021)

Cont2 Loading λ14,5 1.042 (0.022) 1.042 (0.022) 1.042 (0.022) 1.043 (0.021)
Cont3 Loading λ15,5 0.997 (0.024) 0.997 (0.024) 0.996 (0.024) 0.997 (0.024)

SE2 Loading λ17,6 0.572 (0.051) 0.572 (0.049) 0.572 (0.051) 0.558 (0.040)
Intent2 Loading λ19,7 1.039 (0.027) 1.039 (0.027) 1.039 (0.027) 1.041 (0.027)

Intercept(Intercept) α1 0.203 (0.031) 0.200 (0.031) 0.208 (0.026) 0.201 (0.028)
Intercept(Slope) α2 −0.053 (0.017) −0.052 (0.017) −0.055 (0.016) −0.052 (0.016)
Norm→ Intent β73 0.108 (0.033) 0.108 (0.033) 0.109 (0.033) 0.108 (0.033)

Att→ Intent β74 0.440 (0.020) 0.440 (0.020) 0.441 (0.020) 0.441 (0.020)
Cont→ Intent β75 −0.066 (0.036) −0.066 (0.036) −0.067 (0.036) −0.067 (0.035)

SE→ Intent β76 −0.172 (0.052) −0.172 (0.051) −0.172 (0.052) −0.166 (0.049)
Intent→ Intercept β17 0.152 (0.019) 0.152 (0.020) 0.153 (0.019) 0.153 (0.019)

Intent→ Slope β27 0.036 (0.011) 0.036 (0.011) 0.036 (0.011) 0.036 (0.010)
Var(Intercept) ψ11 0.041 (0.027) 0.045 (0.027) 0.027 (*) 0.043 (0.014)

Var(Slope) ψ22 0.016 (0.008) 0.016 (0.008) 0.014 (*) 0.018 (0.005)
Var(Norm) ψ33 1.256 (0.067) 1.256 (0.066) 1.256 (0.067) 1.256 (0.066)

Var(Att) ψ44 5.676 (0.354) 5.676 (0.339) 5.571 (0.343) 5.665 (0.338)
Var(Cont) ψ55 1.071 (0.064) 1.071 (0.064) 1.071 (0.064) 1.070 (0.063)

Var(SE) ψ66 0.793 (0.083) 0.793 (0.077) 0.792 (0.083) 0.812 (0.068)
Var(Intent) ψ77 0.759 (0.055) 0.759 (0.055) 0.760 (0.055) 0.758 (0.054)

Cor(Intercept, Slope) ρ12 0.181 (0.539) 0.138 (0.521) 0.568 (*) 0.081 (0.239)
Cor(Norm, Att) ρ34 0.263 (0.035) 0.263 (0.033) 0.262 (0.035) 0.263 (0.033)

Cor(Norm, Cont) ρ35 0.010 (0.036) 0.010 (0.036) 0.010 (0.036) 0.010 (0.036)
Cor(Norm, SE) ρ36 0.071 (0.038) 0.071 (0.037) 0.071 (0.038) 0.071 (0.037)
Cor(Att, Cont) ρ45 −0.128 (0.036) −0.128 (0.036) −0.128 (0.036) −0.128 (0.036)

Cor(Att, SE) ρ46 −0.372 (0.037) −0.372 (0.035) −0.370 (0.037) −0.369 (0.034)
Cor(Cont, SE) ρ56 0.202 (0.038) 0.202 (0.038) 0.202 (0.038) 0.198 (0.037)
Log-likelihood −19656.32 −19656.34 −19656.51 −19656.32

Parameters 62 62 62 62
Dim. of integration 2 2 7 7

Nodes per dim. 10 10 4 6
Total nodes 100 100 16384 279936

Table 1.
Factor loadings and structural parameter estimates (standard errors) from the model with latent growth
factors as outcomes. A * indicates that the standard error could not be computed.
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Effect Parameter R/C++ (SE) Mplus (SE) gsem (SE)
Norm2 Loading λ32 1.010 (0.013) 1.010 (0.013) 1.010 (0.013)
Norm3 Loading λ42 0.789 (0.010) 0.789 (0.010) 0.789 (0.010)
Norm4 Loading λ52 0.795 (0.011) 0.795 (0.011) 0.795 (0.011)

Att2 Loading λ73 0.994 (0.022) 0.994 (0.022) 0.994 (0.022)
Att3 Loading λ83 0.657 (0.021) 0.657 (0.021) 0.657 (0.021)
Att4 Loading λ93 0.736 (0.021) 0.736 (0.021) 0.736 (0.021)

Cont2 Loading λ11,4 1.042 (0.022) 1.043 (0.022) 1.042 (0.022)
Cont3 Loading λ12,4 0.997 (0.024) 0.997 (0.024) 0.997 (0.025)

SE2 Loading λ14,5 0.555 (0.053) 0.554 (0.050) 0.555 (0.050)
Norm→ Disp/HED β12/λ12 −0.031 (0.035) −0.031 (0.035) −0.031 (0.035)

Att→ Disp/HED β13/λ13 0.126 (0.019) 0.126 (0.019) 0.126 (0.019)
Cont→ Disp/HED β14/λ14 0.066 (0.037) 0.066 (0.037) 0.066 (0.037)

SE→ Disp/HED β15/λ15 −0.100 (0.051) −0.099 (0.051) −0.100 (0.051)
Var(Disp) ψ11 0.260 (0.053) 0.259 (0.053) 0.260 (0.053)

Var(Norm) ψ22 1.256 (0.067) 1.256 (0.066) 51.256 (0.066)
Var(Att) ψ33 5.694 (0.355) 5.695 (0.340) 5.694 (0.340)

Var(Cont) ψ44 1.071 (0.064) 1.071 (0.064) 1.071 (0.064)
Var(SE) ψ55 0.817 (0.089) 0.817 (0.083) 0.817 (0.082)

Cor(Norm, Att) ρ23 0.263 (0.035) 0.263 (0.033) 0.263
Cor(Norm, Cont) ρ24 0.010 (0.036) 0.010 (0.036) 0.010

Cor(Norm, SE) ρ25 0.071 (0.037) 0.071 (0.037) 0.071
Cor(Att, Cont) ρ34 −0.128 (0.036) −0.128 (0.036) −0.128

Cor(Att, SE) ρ35 −0.369 (0.037) −0.368 (0.035) −0.369
Cor(Cont, SE) ρ45 0.197 (0.038) 0.197 (0.038) 0.197
Log-likelihood −13729.78 −13729.78 −13729.76

Parameters 51 51 51
Dim. of integration 1 1 5

Nodes per dim. 10 10 5
Total nodes 10 10 3125

Table 2.
Factor loadings and structural parameter estimates (standard errors) from the Poisson regression model
with latent predictors and overdispersion. For the gsem function, correlations were computed using the
estimated variances and covariances. Consequently, standard errors for correlations obtained using gsem are
not reported.
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Dimension Total Nodes R/C++ Mplus gsem
1 5 22 s 1 s –
2 25 1.37 min 3 s –
3 125 5.92 min 14 s –
4 625 30.11 min 1.00 min –
5 3125 2.73 hr DNC 3.77 h

Table 3.
Time required to estimate the parameters of the Poisson latent regression model using five adaptive quadra-
ture nodes per dimension. DNC = Did Not Converge.
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Intercepti Slopei Normi Atti Conti r∗ m∗ m∗∗

1 0 0 0 0 1 1 0
1 1 0 0 0 3 2 –
0 0 1 0 0 3 1 –
0 0 1 1 1 1 3 2

Table 4.
The unique row patterns from Λ∗

u1, and the corresponding quantities needed for reparameterizing the model
to minimize the dimension of numerical integration required.


